1.气候的基本要素是什么

2.湿度详细资料大全

3.一个地方的气候特征与哪些因素息息相关

4.海拔高度与干旱程度之间存在什么样的关系?

5.什么时露点温度 和湿度有什么区别。 他们和什么量相关联

6.中国地理的气候情况

7.我国纬度位置的优越性是什么?

干燥气候和湿润气候对人的影响_气候的干湿程度与什么有关

可以说是,但也可以说不是。

1,温差,湿度只是人类通过仪器数据监测环境的情况,并非囊括专有名词一说;

2,气候受温差与湿度的影响产生一定的区域化(较为稳定性),而气象即是温差与湿度短时产生的剧变;

3,还有经纬度,引力其他因素导致的可能性;

气候的基本要素是什么

自然地理因素包括地形、气象、水文及植被等方面。由于各地区自然地理条件不同,决定了一个地区地下水的形成条件和变化规律,使各地区的地下水具有独特的性质。下面着重介绍气象因素和水文因素对地下水的形成和变化的影响。

自然界中水循环的重要环节———蒸发、降水,都与大气的物理状态密切相关。气象要素包括气温、气压、风向、风力、湿度、蒸发和降水等这些决定大气物理状态的因素。这种大气的物理状态称为天气。而某一地区天气的多年平均状态(用气象要素的多年平均值来表示)称为该地区的气候。气象和气候因素对水的形成与分布具有重要影响。对地下水的形成而言,虽然变化缓慢的气候因素起着极为重要的影响作用,但变化迅速的气象要素,则对地下水发生着显著的影响。这其中以降水、蒸发及气温的影响最大。

1.气温

大气具有一定的温度称为气温。一切复杂的天气变化,主要是气温条件不同而引起的。气温的变化会直接影响地下水温度的变化,水温变化会使地下水中的气体成分发生变化。例如由于温度的增高,气体活跃性增大,一部分气体就要从水中逸出,从而减少地下水中气体成分的含量;水中气体含量的降低,又会引起地下水化学成分的变化。此外,由于热力增加,地下水蒸发作用加强,水量就减少,水的浓度增加。

2.湿度

大气中水汽的含量称为空气湿度。大气中水汽含量变化不定,占空气总量的0.01%~4%,其中70%分布在0~3.5km的高度内。

水汽具有重量,所以有压力,因此,表示空气中水汽含量多少可以用重量或压力表示。湿度分为绝对湿度和相对湿度两种。

绝对湿度:为某一地区某一时刻空气中水汽的含量。用重量单位时,以1m3空气中所含水汽克数(g/m3)表示,表示符号为m;用压力单位时,为空气中所含水汽分压相当于水银柱高度的毫米数或以毫巴表示,表示符号为e。

空气中绝对湿度变化很大,主要受气温、地表面性质等因素的影响。在温暖地带和辽阔水面或潮湿土壤上空,绝对湿度较大。在气温低的地区,空气绝对湿度则很小。

空气中可容纳水汽的数量和温度有密切关系,温度越高,可容纳的水汽数量越多;反之越少。某一温度下,空气中所能容纳的最大水汽数量,称为该温度下的饱和水汽含量。同样也可用重量单位或压力单位表示,两种情况分别用符号M和E表示。不同温度下的饱和水汽含量,见表1-2。

表1-2 不同温度下的饱和水汽含量

绝对湿度只能说明某一时刻空气中水汽含量的多少,而不能说明空气中的水分是否达到饱和,因此,又有相对湿度的概念。

相对湿度:绝对湿度与饱和水汽含量之比为相对湿度(r)。即

普通水文地质学

尽管空气绝对湿度不变,当气温下降时,则相对湿度增加。当相对湿度达到100%时,说明空气中水汽已达到饱和状态。空气中水汽达到饱和时的气温称为露点。当气温低于露点以下时,多余的水汽就要凝结发生降水。

3.降水

当空气的温度低于露点时,空气中多余的水汽就要凝结,以液态或固态形式降落到地表称为降水。气象部门用雨量计测定降水量,以某一地区某一时期的降水总量平铺于地面得到水层高度的毫米数表示。如某地区年降水量为1000mm,即表示降落在该地区的水量平铺在该区水平面积上,该水层高度为1000mm。

降水是水循环的主要环节之一,一个地区降水量的大小,决定了该地区水的丰富程度,对地下水的形成具有重要影响。大气降水渗入地下,对地下水的补给最为普遍,它是地下水最重要的来源。大气降水补给作用的强弱主要取决于两个方面:一是大气降水(特别是降雨、降雪)的强度、延续时间;另一方面是当地的入渗条件,如包气带的岩性和厚度、地形、植被等。如单位时间内所降下的雨量(降雨强度)大,延续时间长,则可能补给的地下水量就多;当入渗条件好,如地表岩土透水性好,地形平坦,植被良好,则入渗作用就强,补给地下水就多。

不同类型的降雨对地下水的补给是不一样的。

暴雨:历时短而强度大。按气象部门的惯例,当日降雨量大于50mm或12h降雨量大于30mm的降雨称为暴雨。这种雨一般笼罩面积不大,降雨过程短,一般说来降雨大部分来不及渗入地下而变为地表径流流走,而且往往强烈冲刷地表,甚至改变地表原来的结构。但在平坦的裸露砂砾石层地区和植被覆盖较好的地区,仍然可有相当多的水渗入地下。

细雨:历时不久,雨量小,雨滴小。这种雨往往一边下,一边极易蒸发,对地下水补给的意义不大。

*雨:历时久,强度小,笼罩面积大,在地表条件适当时,这种雨可以大量地补给地下水,对地下水的补给具有很大的意义。

暴*雨:历时久,平均强度大,常常酿成地面的洪涝灾害,它对地下水的影响也是显著的,它常常破坏原有的地表结构,对矿坑和某些工程带来威胁。

在分析大气降水的补给作用时,不但要考虑绝对的降水量,还应考虑降水的性质(如延续时间、强度),降水形式(液态、固态)和降水的类型等。在水文地质调查时,应收集降水的月平均、年平均及多年平均资料。

4.蒸发

水在常温下,由液态变为气态进入大气的过程称为蒸发。自然界的蒸发可以在水面、岩石土壤表面和植物的枝叶上进行。所以根据蒸发性质的不同,可分为水面蒸发、土面蒸发和叶面蒸发三种。蒸发量仍以水层厚度毫米数表示。

(1)水面蒸发

水面蒸发是指在一个地区,一定时间内地表水体表面水分的蒸发。其蒸发量的大小用水面蒸发皿来测定,其值以蒸发度表示,它表示一个地区蒸发能力的大小。

水面蒸发量的大小受许多因素影响,它与蒸发面的温度、空气饱和差、风速、气压等有关。蒸发面的温度越高,饱和差越大,风速越大,气压越低,则蒸发速度越快,蒸发量越大。

(2)土面蒸发

土面蒸发是指在一个地区,一定时间内土壤表面水分的蒸发。土面蒸发量除了气温、饱和差、风速、气压外,还与地下水的埋藏条件、土壤性质有关。一般当地下水埋藏较浅时,由于土壤毛细作用,将地下水吸至地表,蒸发量加大;埋藏较深,蒸发量就小。土壤颗粒越细,土壤层经常保持的水分就多,则蒸发量就大。

(3)叶面蒸发

叶面蒸发是指在一个地区,一定时间内某种植物叶面水分的蒸发,其蒸发过程称为蒸腾(蒸散)。

必须注意,气象部门提供的蒸发量,只能说明蒸发的相对强度(蒸发度),它不代表实际的蒸发水量。

最后介绍气压与地下水的关系和潮湿系数的概念。

大气的质量施加于地面的压力称为气压,常用毫米水银柱高度表示。在标准状态下的气压为760mmHg高度,即约相当于105Pa。

各地气压的差异引起空气流动,冷暖空气交锋,形成降雨。我国东部由于受季风的影响,故降雨大多集中于夏季,而冬季寒冷干燥。气压变化可影响地下水位升降,从而引起泉水流量变化。如气压下降,泉水流量有增高的现象。

潮湿系数(KB)是指一个地区的年降水量(X)与年蒸发度(Z)(水面蒸发值)的比值。

普通水文地质学

潮湿系数的大小反映了一个地区水分的丰缺和气候的干湿特性。KB越大,说明地区水量越丰富;反之,则蒸发越强烈,水分越缺乏。前者有利于地下水的形成,而后者不利于地下水的形成。地区的潮湿程度与潮湿系数的关系如下:

普通水文地质学

普通水文地质学

湿度详细资料大全

主要气象要素

气压:大气的压力,它是在任何表面的单位面积上,空气分子运动所产的压力。

气温:大气的温度,表示大气冷热程度的量。它是空气分子运动的平均动能。单位一般用摄氏度℃,或用热力学温度K。

大气湿度(简称湿度): 它是表示空气中水汽含量或潮湿的程度,可以由比湿(g)、绝对湿度(pv)、水气压(e)、露点、相对湿度等物理量表示。

风: 空气相对于地面的运动。气象上常指空气的水平运动,并用风向、风速来表示。风是一个矢量,具有大小和方向。风向是指风的来向。风速是指单位时间内空气在水平方向运动的距离,单位用m/s或km/h表示。(0-12级)

云: 悬浮在空气中的大量水滴和冰晶组成的可见聚合体。在常规气象观测中要测定云状、云高和云量。

降水:指从云中降落的液态水和固态水,如雨、雪、冰雹等。

蒸发: 液体表面的气化现象。气象上指水由液体变成气体的过程。

辐射:能量或物质微粒从辐射体向空间各方向发送过程。气象上通常称太阳辐射为短波辐射,地球表面辐射和大气辐射为长波辐射。

日照: 表示太阳照射时间的量。气象上通常提供的是观测到的实照时数。

能见度:是指视力正常的人在当时的天气条件下,能够从天空背景中看到或辨认出的目标物(黑色、大小湿度)的最低水平距离,单位:m或km。能见度表示了大气清洁、透明的程度。观测值通常分为10级。

气湿:空气的湿度简称气湿,反映了大气中水汽含量的多少和空气的潮湿程度。

常用的表示方法有:绝对湿度、水汽压力、相对湿度、饱和气压、露点等。

(1)绝对湿度:单位体积(1m3)的湿空气中含有水汽的质量(kg)。由理想气体状态方程可得到:

(2)相对湿度:空气的绝对湿度ρw与同温度下饱和空气的绝对湿度ρv之比。它等于空气的水汽分压Pw与同温度下饱和空气的水汽分压Pv之百分比。

(3)含湿量:湿空气中1kg干空气所包含的水汽质量(kg),气象中也成为比湿。等于水汽质量(kg)除于干空气质量kg。

露点或霜点 在不改变气压和混合比的情况下,把纯水(或纯冰)平面附近的空气冷却到饱和时的温度。

饱和差 空气在某温度下的饱和水汽压与当时实际水汽压的差值。其单位和气压的单位相同。

一个地方的气候特征与哪些因素息息相关

湿度,表示大气干燥程度的物理量。在一定的温度下在一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。空气的干湿程度叫做“湿度”。在此意义下,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示;若表示在湿蒸汽中水蒸气的重量占蒸汽总重量(体积)的百分比,则称之为蒸汽的湿度。人体感觉舒适的湿度是:相对湿度低于70%。

基本介绍 中文名 :湿度 外文名 :humidity 拼音 :shī dù 专业 :地球科学/气象学/物理学 属性 :大气干燥程度的物理量 类别 :绝对湿度/相对湿度/比湿 概念,内容,基本形式,表示方式,测量方法,我国湿润度,意义和用途,气象学水文学,医学,生物学,储藏和生产,农业和林业,建筑,静电与湿度,加湿和除湿, 概念 湿度,一般在气象学中指的是 空气湿度 ,它是空气中水蒸气的含量。空气中液态或固态的水不算在湿度中。不含水蒸气的空气被称为干空气。由于大气中的水蒸气可以占空气体积的0%到4%,一般在列出空气中各种气体的成分的时候是指这些成分在干空气中所占的成分。 空气的干湿程度,或表示含有的水蒸气多少的物理量,称为湿度。单位体积的空气中含有的水蒸气的质量叫作绝对湿度。由于直接测量水蒸气的密度比较困难,因此通常都用水蒸气的压强来表示。空气的绝对湿度并不能决定地上水蒸气的快慢和人对潮湿程度的感觉。人们把某温度时空气的绝对湿度和同温度下饱和气压的百分比叫作相对湿度。 内容 基本形式 湿度有三种基本形式,即水汽压、相对湿度、露点温度。 一台湿度计正在纪录相对湿度 水汽压 (曾称为绝对湿度)表示空气中水汽部分的压强,单位以百帕(hPa)为单位,取小数一位; 相对湿度 用空气中实际水汽压与当时气温下的饱和水汽压之比的百分数表示,取整数; 露点温度 是表示空气中水汽含量和气压不变的条件下冷却达到饱和时的温度,单位用摄氏度(℃)表示,取小数一位。配有湿度计时还可以测定相对湿度的连续记录和最小相对湿度。 表示方式 湿度计多个量被用来表示空气的湿度。下面列出最常用的: 水汽压 绝对湿度 相对湿度 比湿 露点 用来测量湿度的仪器叫做湿度计。 湿度单位 RH就是相对湿度,(Relative Humidity)是用露点温度来定义的。 湿度的名词解释: 在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,%rh表示。总言之,即气体中(通常为空气中)所含水蒸气量(水蒸气压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 绝对湿度 绝对湿度是指一定体积的空气中含有的水蒸气的质量,一般其单位是克/立方米。绝对湿度的最大限度是饱和状态下的最高湿度。绝对湿度只有与温度一起才有意义,因为空气中能够含有的湿度的量随温度而变化,在不同的温度中绝对湿度也不同,因为随着温度的变化空气的体积也要发生变化。但绝对湿度越靠近最高湿度,它随温度的变化就越小。 下面是计算绝对湿度的公式: 其中的符号分别是: e –蒸汽压,单位是帕斯卡(Pa) –水的气体常数=461.52J/(kg K) T –温度,单位是开尔文(K) m –在空气中溶解的水的质量,单位是千克(kg) V –空气的体积,单位是立方米(m)。 相对湿度(RH) 一台湿度计正在记录相对湿度相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高。相对湿度为100%的空气是饱和的空气。相对湿度是50%的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高空气中可以含的水就越多,也就是说,在同样多的水蒸气的情况下温度升高相对湿度就会降低。因此在提供相对湿度的同时也必须提供温度的数据。通过相对湿度和温度也可以计算出露点。 以下是计算相对湿度的公式: 其中的符号分别是: ρw – 绝对湿度,单位是克/立方米 ρw,max – 最高湿度,单位是克/立方米 e – 水汽压,单位是帕斯卡 E – 饱和水汽压,单位是帕斯卡 s –比湿,单位是克/千克 S – 最高比湿,单位是克/千克 比湿 比湿是融化在空气中的水的质量与湿空气的质量之间的比。如没有凝结或蒸发的现象发生的话一个封闭的空气在不同的高度下的比湿是相同的。在饱和状态下的最高比湿的符号是S。 以下是计算比湿 s 的公式: 其中使用的符号为: 相似的最高比湿为: 公式 其中使用的符号分别为: mx – 质量,单位为克 ρx –密度,单位为克/立方米 Vtotal – 湿空气的总体积,单位为立方米 Rw – 水的气体常数,单位为焦耳/(千克·开尔文) RL – 干空气的气体常数,单位为焦耳/(千克·开尔文) T – 温度,开尔文 MWater – 水的摩尔质量=18.01528克/摩尔 –干空气的摩尔质量=28.9634克/摩尔 e – 水汽压,单位是帕斯卡 p –气压,单位为帕斯卡 E – 饱和水汽压,单位为帕斯卡 测量方法 干湿球测量法露点湿度测量法 利用物质几何尺寸变化测量法 库伦湿度计 光学形湿度计 气象色谱法 化学物质电特性法 离子晶体冷凝湿度计 测定湿度的仪器常用的有干湿球温度表,毛发湿度表(计)和电阻式湿度片等。 a) 干湿球温度表:用一对并列装置的、形状完全相同的温度表,一支测气温,称干球温度表,另一支包有保持浸透蒸馏水的脱脂纱布,称湿球温度表。当空气未饱和时,湿球因表面蒸发需要消耗热量,从而使湿球温度下降。与此同时,湿球又从流经湿球的空气中不断取得热量补给。当湿球因蒸发而消耗的热量和从周围空气中获得的热量相平衡时,湿球温度就不再继续下降,从而出现一个干湿球温度差。干湿球温度差值的大小,主要与当时的空气湿度有关。空气湿度越小,湿球表面的水分蒸发越快,湿球温度降得越多,干湿球的温差就越大;反之,空气湿度越大,湿球表面的水分蒸发越慢,湿球温度降得越少,干湿球的温差就越小。当然,干湿球的温差的大小还与其他一些因素有关,如湿球附近的通风速度、气压、湿球大小、湿球润湿方式等有关。可以根据干湿球温度值,并将一些其它因素考虑在内,从理论上推算出当时的空气湿度来。干湿球温度表是当前测湿的主要仪器,但不适用于低温(-10℃以下)使用。 b) 发湿度表(计):利用脱脂人发(或牛的肠衣)具有空气潮湿时伸长,干燥时缩短的特性,制成毛发湿度表或湿度自记仪器,它的测湿精度较差,毛发湿度表通常在气温低于-10℃时使用。

c) 电阻式湿度片:利用吸湿膜片随湿度变化改变其电阻值的原理,常用的有碳膜湿敏电阻和氯化锂湿度片两种。前者用高分子聚合物和导电材料碳黑,加上粘合剂配成一定比例的胶状液体,涂覆到基片上组成的电阻片;后者是在基片上涂上一层氯化锂酒精溶液,当空气湿度变化时,氯化锂溶液浓度随之改变从而也改变了测湿膜片的电阻。这类元件测湿精度较干湿表低,主要用在无线电探空仪和遥测设备中。

d) 薄膜湿敏电容:是以高分子聚合物为介质的电容器,因吸收(或释放)水汽而改变电容值。它制作精巧,性能优良,常用在探空仪和遥测中。

e) 露点仪:能直接测出露点温度的仪器。使一个镜面处在样品湿空气中降温,直到镜面上隐现露滴(或冰晶)的瞬间,测出镜面平均温度,即为露(霜)点温度。它测湿精度高,但需光洁度很高的镜面,精度很高的温控系统,以及灵敏度很高的露滴(冰晶)的光学探测系统。使用时必须使吸入样本空气的管道保持清洁,否则管道内的杂质将吸收或放出水分造成测量误差。 我国湿润度 数据反演产品 湿润度表示气候湿润程度的指标,用地面水分的收入量与支出量的比值表示。根据《农业气候区划及方法》,将我国湿润系数进行分级,可分为七级,分别为干旱、半干旱、干半湿润、湿半湿润、湿润、潮湿以及过湿。为国家的农业建设提供依据。全国湿润度信息产品是地理国情监测云平台推出的气象/气候环境类系列数据产品之一。 2005年中国湿润系数分布图 目前已有产品包括中国2000~2011年逐年、逐月、逐旬、逐天产品。 意义和用途 空气湿度在许多方面有重要的用途,在大气学、气象学和气候学中它主要是理论中的一个重要值,而在实际套用上的作用比较小。 气象学水文学 下雨的时候,空气湿度是非常大的在气象学和水文学中湿度是决定蒸发和蒸腾的重要数据。它对不同的气候区的产生起决定性的作用。大气中的水蒸气在水循环过程中也是必不可少的。通过水蒸气水可以很快地在地球表面运动。水在大气中形成降水、云和其它现象,它们决定了地球的气象和气候。 而在天气预报中,更常用到相对湿度。它反映了降雨、有雾的可能性。在炎热的天气之下,高的相对湿度会让人类(和其他动物)感到更热,因为这妨碍了汗水的挥发。人类可以从而制定出酷热指数。 医学 在医学上空气的湿度与呼吸之间的关系非常紧密。在一定的湿度下氧气比较容易通过肺泡进入血液。一般人在45-55%的相对湿度下感觉最舒适。过热而不通风的房间里的相对湿度一般比较低,这可能对皮肤不良和对黏膜有刺激作用。湿度过高影响人调节体温的排汗功能,人会感到闷热。总的来说人在高温但低湿度的情况下(比如沙漠)比在温度不太高但湿度很高的情况下(比如雨林)的感觉要好。在通过呼吸进行时气体的湿度是非常关键的。医学上使用的气体一般是在无水的情况下存放的,如在使用时不添加湿度的话会在人的肺中导致蒸发和失水。 在任何气温条件下潮湿的空气对人体都是不利的。 研究表明,湿度过大时,人体中一种叫松果腺体分泌出的松果激素量也较大,使得体内甲状腺素及肾上腺素的浓度就相对降低,细胞就会“偷懒”,人就会无精打,萎靡不振。长时间在湿度较大的地方工作、生活,还容易患湿痹症;湿度过小时,蒸发加快,干燥的空气容易夺走人体的水分,使皮肤干燥、鼻腔黏膜受到刺激,所以在秋冬季干冷空气侵入时,极易诱发呼吸系统病症。此外,空气湿度过大或过小时,都有利于一些细菌和的繁殖和传播。科学测定,当空气湿度大于65%或小于40%时,病菌繁殖滋生最快,当相对湿度在45%-55%时,病菌死亡较快。 相对湿度通常与气温、气压共同作用于人体。现代医疗气象研究表明,对人体比较适宜的相对湿度为:夏季室温25℃时,相对湿度控制在 40%-50%比较舒适;冬季室温20℃时,相对湿度控制在60%-70%。夏季三伏时节,由于高温、低压、高湿的作用,人体汗液不易排出,出汗后不易被蒸发掉,因而会使人烦躁、疲倦、食欲不振;冬季湿度有时太小,空气过于干燥,易引起上呼吸道黏膜感染,患上感冒。据科学试验,在气温日际变化大于3℃、气压日际变化大于10百帕,相对湿度日际变化大于10%时,关节炎的发病率会显著增加。 人体致死的高温指标与空气湿度也有很大关系。当气温和湿度高达某一极限时,人体的热量散发不出去,体温就要升高,以致超过人体的耐热极限,人即会死亡。因此,我国规定灾害性天气标准为,长江以南最高气温高于40℃,或者最高气温达35℃,同时相对湿度大于60%;长江以北地区最高气温达35℃,或者最高气温达30℃,同时相对湿度大于65%。 夏季,湿度增大,水汽趋于饱和时,会抑制人体散热功能的发挥,使人感到十分闷热和烦躁。冬天,湿度增大时,则会使热传导加快约20倍,使人觉得更加阴冷、抑郁。关节炎患者由于患病部位关节滑膜及周围组织损伤,抵抗外部刺激的能力减弱,无法适应激烈的降温,使病情加重或酸痛加剧。如果湿度过小时,因上呼吸道黏膜的水分大量丧失,人感觉口干舌燥,甚至出现咽喉肿痛、声音嘶哑和鼻出血,并诱发感冒。调查研究还表明,当相对湿度达90%以上,25℃会让人感觉30℃似的。干燥的空气能以与人体汗腺制造汗液的相等速度将汗液吸收,使我们感觉凉快。可是湿度大的空气却由于早已充满水分,因而无力再吸收水分,于是汗液只得积聚在我们的皮肤上,使我们的体温不断上升,同时心力不胜负荷。 空气湿度是表示空气中水汽含量和湿润程度的气象要素。地面空气湿度是指地面气象观测规定高度(即1.25~2.00米,国内为1.5米)上的空气湿度。是由安装在百叶箱中的干湿球温度表和湿度计等仪器所测定的(基本站每日定时观测4次,基准站每日定时观测24次),有三种基本形式,即水汽压、相对湿度、露点温度。水汽压(曾称为绝对湿度)表示空气中水汽部分的压力,单位以百帕(hpa)为单位,取小数一位;露点温度是表示空气中水汽含量和气压不变的条件下冷却达到饱和时的温度。 生物学 在生物学中,尤其是在生态学中空气湿度是一个非常关键的量。它决定一个生态系统的组成。在植物的叶面上气孔的开关和植物的呼吸。有些动物比如蜗牛只有在它们的皮肤有一定湿度的情况下才能吸收氧气。 储藏和生产 在存放水果的仓库里湿度决定水果的成熟。在存放金属的仓库里湿度过高可能导致腐蚀。其它许多货物比如化学药剂、烟、酒、香肠、木、艺术品、积体电路等等也必须在一定的湿度或在湿度为零的条件下存放。因此在许多仓库、博物馆、图书馆、计算机中心和一定的工厂(比如微电子工业)中都有空调装置来控制室内的湿度。 农业和林业 雾气弥漫的森林湿度过低可以在农业上导致土壤和植物失水和减产。 在林业和林木工业中湿度也是一个非常关键的量。在锯木厂人们往往向堆积在那里的木头浇水。木头本身有它自己的湿度,在空气中它的湿度逐渐与空气的周围湿度靠近。这个木头内的湿度的变化会导致木头的体积的变化,这对林木工业来说是非常关键的。 一般木头在存放时要让空气可以直接与它的各个方向接触,这样来避免木头变形或发霉。在铺地板时最好先让地板的木头在房屋内搁置一两天,来让它与房屋内的湿度一样,否则的话地板的木头可能会在铺设后伸张或收缩。 建筑 在建筑物理中露点是一个非常重要的量。如一座建筑内的温度不一样的话,那么从高温部分流入低温部分的潮湿的空气中的水就可能凝结。在这些地方可能会发霉,在建筑设计时必须考虑到这样的现象。 此外相对湿度是衡量建筑室内热环境的一个重要指标,建筑物理把在人体的主观热感觉处于中性时,风速不大于0.15m/s,相对湿度为50%定为最舒适的热环境,这也是室内热环境设计的一个基准。 静电与湿度 空气越干燥越易产生静电, 相对湿度(RH)对表面积累电荷的性能产生直接影响。相对湿度越高,物体储存电荷的时间就越短,表面电荷减小(因为相对湿度增加)的方式可通过复合或传导,当相对湿度增加,空气的电导率也随之增加。 在空气逐渐干燥时(相对湿度的百分比减小),产生静电的能力变化是确定且明显的。在相对湿度10%(很干燥的空气)时,在地毯上行走时,就能产生35kV的电荷,但在相对湿度55%时将锐减至7.5kV。工作环境的相对湿度的最佳范围在30%—50%。一些清洁场所一般要求相对湿度在50%,由于存在对腐蚀和湿度的影响较敏感的器件,其它环境需要较低的相对湿度。 加湿和除湿 加湿 离心式加湿原理 离心加湿器工作原理: 离心式加湿器是利用高速电机带动复合叶轮旋转产生真空,贮水箱内的水在大气压力作用下通过吸水器压至复合雾化叶轮,经化成直径为5um的细雾,经过下进风道的微风,送至出雾口,在出雾口与上进风道的高速风流相汇合 形成高速气雾喷到空气中,气雾与空气中的余热相接触,完全汽化,达到加湿目的。 极式加湿原理 电极式蒸汽加湿器的工作原理: 当自来水进入加湿桶后,水位逐渐上升。在加湿器电极上通电,当水位漫过电极后,电极之间通过水的导电性而构成电流回路,并把水加热至沸腾,输出洁净蒸汽。随道蒸气输出,水位逐渐降低。这时进水阀通电打开,再次进水,直到 合适的水位,并继续产生蒸汽。 当加湿桶中的矿物质浓度越来越高时,排水阀自动打开,排去废水,加湿器再次补充新水,并继续加湿工作过程。 使用导电率过高或过低的自来水可能会导致加湿桶损耗过快或加湿量不足 超音波加湿器原理: 超音波加湿器是用超音波高频振荡的原理,将水雾化为1—5微米的微粒,通过风动装置,将水雾扩散到空气中,从而达到均匀加湿空气的目的。其特点是,加湿强度大,加湿均匀,加湿效率高;节能、省电;超长使用寿命;湿度自动平衡,无水自动保护;兼具医疗雾化、冷敷浴面、清洗首饰等功能;缺点是对水质有一定的要求。 加湿器主要是靠雾化片来工作,在离心式加湿雾化片上接上电源就可以做一个简单的加湿器了,这样是不成立的,因为他有一个真空的大气压作用,你没法做到,所以电压也无从说起了。 除湿 除湿机工作原理: 转轮除湿机的核心结构为一不断转动的蜂窝状干燥转轮,它是除湿机吸收水分的最关键的部件,是由含有少许金属钛的特殊玻璃纤维载体和活性矽胶复合而成,其蜂窝状的结构设计,不仅能够极大限度的附着吸湿剂,增加湿空气与吸湿剂相互接触的表面积,提高除湿机的工作效率,而且具有很高的强度,能够很好的适用于各种复杂的工作环境。 转轮的两侧,由高度密封性能的矽橡胶制成的隔板将整个表面分成两个扇区: 270度的处理扇区;90度的再生还原扇区。 当需要除湿的潮湿空气(称处理空气)进入处理区域, 湿空气中的水蒸气被转轮中的活性矽胶所吸附, 从而得到干燥,干燥后的空气则通过送风机送出。 随着吸收水分的增加, 处理扇区渐渐趋于饱和状态。为了维持其稳定的除湿性能,就需要对转轮中的吸湿剂进行再生还原,这时, 趋于饱和的转轮在马达的驱动下, 慢慢转入再生区域, 开始再生再生过程。 再生空气(一般取自室外或机房)经过加热后达到100~140度, 然后反向吹入再生区域, 在高温状态下,转轮中已吸收的水份被脱附,再生空气由于在脱附过程中损失了大量显热,自身温度降低,变成了饱含水分的湿空气, 被风机引导排至室外,从而完成了水分的转移。而转轮在再生脱水后,重新恢复了强大的吸湿能力,在马达的驱动下,转入工作区域进行除湿。 上述的除湿和再生过程是同时发生的,空气不断被干燥,转轮不断被再生,周而复始,从而保证了除湿机持续恒定的工作状态。转轮转速8~12转/小时,所需动力极小, 除湿机出口空气参数条件,仅取决于进口空气的参数和再生能量的控制。

海拔高度与干旱程度之间存在什么样的关系?

影响气候的因素有

纬度位置

2.海陆位置

3.大气环流

4.地形

5.洋流。

气候

气候是长时间内气象要素和天气现象的平均或统计状态,时间尺度为月、季、年、数年到数百年以上。气候以冷、暖、干、湿这些特征来衡量,通常由某一时期的平均值和离差值表征。气候的形成主要是由于热量的变化而引起的。气候包括温度,湿度,气压,风力,降水量,大气粒子数及众多其他气象要素在很长时期及特定区域内的统计数据。

1基本介绍

气候告急气候是地球上某一地区多年时段大气的一般状态 ,是该时段各种天气过程的综合表现。气象要素(温度、降水、风等)的各种统计量(均值、极值、概率等)是表述气候的基本依据。气候与人类社会有密切关系,许多国家很早就有关于气候现象的记载。中国春秋时代用圭表测日影以确定季节,秦汉时期就有二十四节气、七十二候的完整记载。气候一词源自古希腊文,意为倾斜,指各地气候的冷暖同太阳光线的倾斜程度有关。

由于太阳辐射在地球表面分布的差异,以及海洋、陆、山脉、森林等不同性质的下垫面在到达地表的太阳辐射的作用下所产生的物理过程不同,使气候除具有温度大致按纬度分布的特征外,还具有明显的地域性特征。按水平尺度大小,气候可分为大气候、中气候与小气候。大气候是指全球性和大区域的气候,如:热带雨林气候、地中海型气候、极地气候、高原气候等;中气候是指较小自然区域的气候,如:森林气候、城市气候、山地气候以及湖泊气候等;小气候是指更小范围的气候,如:贴地气层和小范围特殊地形下的气候(如一个山头或一个谷地)。

2气候类型

形成简介

由于热量与水分结合状况的差异,或水分季节分配不同,或有巨大的山地、高原存在,有的同一个气候带内其内部气候仍有一定差异,可进一步划分若干气候类型。例如,大气环流条件不同,同是亚热带气候带,亚欧大陆的东岸是季风气候类型,西岸是地中海气候类型。

在纬度位置、海陆分布、大气环流、地形、洋流等因素的影响下,世界气候大致分为以下几种类型:

热带雨林气候 

热带雨林气候(也称赤道雨林气候)的特点是:全年高温多雨。位于各洲的赤道两侧,向南、北延伸5°~10°左右,分布:南美洲的亚马孙平原,非洲的刚果盆地和几内亚湾沿岸,亚洲东南部的一些群岛等。这些地区位于赤道低压带,气流以上升运动为主,水汽凝结致雨的机会多,全年多雨,无干季,年降水量在2,000毫米以上,最少雨月降水量也超过60毫米,且多雷阵雨;各月平均气温为25°~28℃,全年长夏,无季节变化,年较差一般小于3℃,而平均日较差可达6°~ 12℃。几处特殊分布:马达加斯加岛东部,澳大利亚东北部,巴西东南部,加勒比海沿岸岛国东北部。在这种终年高温多雨的气候条件下,植物可以常年生长,树种繁多,植被茂密成层。

热带草原气候 热带干湿季气候(也称热带草原气候)的特点是:全年高温,降水分干季和湿季。这种气候主要分布在赤道多雨气候区的两侧,即南、北纬5°~15°左右(有的伸达25°)的中美、南美和非洲。其主要特点,首先是由于赤道低压带和信风带的南北移动、交替影响,一年之中干、湿季分明。当受赤道低压带控制时,盛行赤道海洋气团,且有辐合上升气流,形成湿季,潮湿多雨,遍地生长着稠密的高草和灌木,并杂有稀疏的乔木,即稀树草原景观。当受信风影响时,盛行热带大陆气团,干燥少雨,形成干季,土壤干裂,草丛枯黄,树木落叶。与赤道多雨气候相比,一年至少有1~2个月的干季。其次是全年气温都较高,具有低纬度高温的特色,最冷月平均温度在16°~18℃以上。最热月出现在干季之后、雨季之前,因此,本区气候一般年分干、热、雨三个季节。气温年较差稍大于赤道多雨气候区。

热带沙漠气候 

热带干旱与半干旱气候(也称热带荒漠气候)的特点是:全年高温干燥。它分布于热带干湿季气候区以外,大致在南、北纬15°~30°之间,以非洲北部、西南亚和澳大利亚中西部分布最广。热带干旱气候区常年处在副热带高气压和信风的控制下,盛行热带大陆气团,气流下沉,所以炎热、干燥成了这种气候的主要特征;气温高,有世界“热极”之称。降水极少,年降雨量不足200毫米,且变率很大,甚至多年无雨,加以日照强烈,蒸发旺盛,更加剧了气候的干燥性。热带半干旱气候,分布于热带干旱气候区的外缘,其主要特征:一是有一短暂的雨季,年降水量可增至500毫米;二是向高纬一侧的气温不如向低纬一侧的高。

热带季风气候 

气候特征热带季风气候的特点是:全年高温,降水分旱季和雨季。主要分布在我国台湾南部、雷州半岛、海南岛,以及中南半岛、印度半岛的大部分地区、菲律宾群岛;此外,在澳大利亚大陆北部沿海地带也有分布。这里全年气温皆高,年平均气温在20℃以上,最冷月一般在18℃以上。年降水量大,集中在夏季,这是由于夏季在赤道海洋气团控制下,多对流雨,再加上热带气旋过境带来大量降水,因此造成比热带干湿季气候更多的夏雨;在一些迎风海岸,因地形作用,夏季降水甚至超过赤道多雨气候区。年降水量一般在1,500~2,000毫米以上。本区热带季风发达,有明显的干湿季,即在北半球冬吹东北风,形成干季;夏吹来自印度洋的西南风(南半球为西北风),富含水汽,降水集中,形成温季。

亚热带季风气候

亚热带季风气候的特点是夏季高温多雨,冬季温和湿润(即少雨)。出现在北纬25°~35°亚热带大陆东岸,它是热带海洋气团和极地大陆气团交替控制和互相角逐交绥的地带。主要分布在我国东部秦岭淮河以南、热带季风气候型以北的地带,以及日本南部和朝鲜半岛南部等地。这里冬季温暖,最冷月平均气温在0℃以上;夏季炎热,最热月平均气温大于22℃,气温的季节变化显著,四季分明。年降水量一般在1,000~1,500毫米,夏季较多,但无明显干季。同温带季风气候相比,季节变化基本相似,只是冬温较高,年降水量增多.

亚热带地中海气候 

亚热带夏干气候(也称地中海式气候)的特点是:夏季炎热干燥,冬季温和多雨。位于副热带纬度的大陆西岸,约在纬度30°~40°之间,包括地中海沿岸、美国加里福尼亚州沿海、南美智利中部沿海、南非的南端和澳大利亚的南端。它是处在热带半干旱气候与温带海洋性气候之间的过渡地带。这些地区受气压带季节位移影响显著,夏季受副热带高气压控制,气流下沉,因而除大陆西部沿海受寒流影响外,夏温十分炎热,下沉气流不利兴云致雨,所以气候干燥;冬季受西风影响,温和湿润。全年雨量适中,年降水量在300~1,000毫米之间,主要集中在冬季。

亚热带沙漠气候

亚热带大陆性干旱与半干旱气候。主要分布在亚热带大陆的内部,包括西亚的伊朗高原和安纳托原、美国西部的内陆高原以及南美的格栏查科等地。干旱气候的形成是由于深居内陆距海远或因有山地阻挡,湿润的涵养气流难以到达,又兼这里地处亚热带,鼓夏季高温,冬季温和。半干旱气候属于由干旱气候向其他气候的过度类型。这里的植被类型属于荒漠草原,通常生长有旱生灌木及禾本科植物,土壤属于半荒漠的淡棕色土。

亚热带草原气候

特点基本与热带草原气候相同,但分布在亚热带。

温带气候

温带海洋性气候 

温带海洋性气候的特点是:全年温和多雨。位于大陆西岸,南、北纬40°~60°地区。终年处在西风带,深受海洋气团影响,沿岸又有暖流经过,冬无严寒,夏无酷暑,最冷月平均气温在0℃以上,最热月在22℃以下,气温年、日较差都小。全年都有降水,秋冬较多,年降水量在1,000毫米以上,在山地迎风坡可达2,000~3,000毫米以上。这种气候在西欧最为典型,分布面积最大,在南、北美大陆西岸相应的纬度地带以及大洋洲的塔斯马尼亚岛和新西兰等地也有分布。

温带大陆性气候

温带大陆性气候的特点是:冬季寒冷,夏季温暖,降水稀少。分布在北纬35°~55°之间的北美大陆东部(西经100°以东)和亚欧大陆温带海洋性气候区的东侧。这种气候在气温、降水的变化上同温带季风气候有些类似,但风向和风力的季节变化不像温带季风气候那样明显。冬季由于气旋活动影响,降水稍多;夏季有对流雨,但夏雨集中程度不像温带季风气候那样显著。天气的非周期性变化也很大。

温带季风气候

温带季风气候的特点是:夏季高温多雨,冬季寒冷干燥。出现在北纬35°~55°左右的亚欧大陆东岸,包括我国华北和东北、朝鲜的大部、日本的北部以及俄罗斯远东地区的一部分。冬季这里受来自高纬内陆偏北风的影响,盛行极地大陆气团,寒冷干燥;夏季受极地海洋气团或变性热带海洋气团影响,盛行东和东南风,暖热多雨,雨热同季。年降水量1,000毫米左右,约有三分之二集中于夏季。全年四季分明,天气多变,随着纬度的增高,冬、夏气温变幅相应增大,而降水逐渐减少。

温带阔叶林气候

主要分布在西欧、东亚和北美地区。气候四季分明,夏季炎热多雨,冬季寒冷干燥。最热月平均温度13—23℃,最冷月平均温度约-6℃。年降水量500—1000毫米。也称温带森林气候。

温带草原气候

温带大陆性干旱与半干旱气候。也称温带荒漠和温带草原气候,主要分布于亚洲和北美大陆的腹地以及南美巴塔哥尼亚高原和潘帕斯等地。亚洲和北美的此类气候区距海遥远,深入内陆,四周又有山地、高原阻挡,湿润的海洋气流难以到达,终年盛行温带大陆气团,于是形成了冬冷夏热、干燥少雨的温带大陆性干旱与半干旱气候。一般而言,干旱气候的年平均降水量为250mm以下,半干旱气候则为250~500mm。南美的此类气候区地处西风带的大陆东岸,是西风带的雨影区域,且西岸有高大的安第斯山脉,西风过山以后下沉,绝热增温,干燥少雨,加上沿岸又有寒流经过,空气稳定,降水稀少。

温带沙漠气候又称温带大陆性干旱气候

(1) 温带大陆腹地沙漠地区的气候。极端干旱,降雨稀少,年平均降水量200~300mm ,有的地方甚至多年无雨。夏季炎热,白昼最高气温可达50℃或以上;冬季寒冷,最冷月平均气温在0℃以下,气温年较差较大,日较差也较大。云量少,相对日照长,太阳辐射强。自然景观多为荒漠,自然植物只有少量的沙生植物。中亚和中国塔里木盆地属沙漠气候。

(2)温带半干旱气候在干旱气候的,夏季温度比温带干旱气候低,降雨量也比温带干旱气候大。

什么时露点温度 和湿度有什么区别。 他们和什么量相关联

海拔高度与干旱程度之间存在着一定的关系,但是关系复杂。一般情况下,随着山地海拔高度的增加,降水增加,干旱程度降低;随着海拔高度继续增加,降水又减少,干旱程度又加剧。比如我国西北天山北坡。

地形对降水的影响

地形既能促进降水的形成,又能影响降水的分布,一山之隔,山前山后往往干湿悬殊,使局地气候产生显著差异。

1.促进降水的形成

地形对降水形成有一定的促进作用。当暖湿不稳定气流在移行过程中,遇到山系的机械阻障时,引起气流抬升,加强对流,容易生成云雨。地形促进降水形成的主要机制是:①山脉对气流的机械阻障,强迫抬升,加强对流,促进凝云致雨;②山地阻挡气团和低值系统的移动,使之缓行或停滞,延长降水时间,增大降水强度;③当气流进入山谷时,由于喇叭口效应,引起气流辐合上升,促进对流发展形成云雨;④山区地形复杂,各部分受热不均匀,容易产生局部热力对流,促进对流雨或热雷雨的生成;⑤山地崎岖不平,因磨擦作用产生湍流上升,也会促进降水。

在上述因素的共同作用下,使山地降水量比平原增多,但分布极不均匀。

2.影响降水的分布

地形对降水分布的影响十分复杂,大致可从两方面考虑:一方面高大地形影响四周大范围降水分布,如青藏高原对亚洲降水分布影响范围广阔。另一方面,地形本身各部分降水分布差异悬殊。

(1)高原内部降水量随海拔增高而递减 因为海拔增加,大气水分含量相对减少。所以在辽阔的高原内部,降水量一般较少,例如,青藏高原内部,年降水量仅70~80mm。

(2)山地降水量随海拔增高而增多,但有一个最大降水量高度,超过此高度,山地降水不再随高度递增 最大降水高度因气候干湿而异。湿润气候区,最大降水高度低,降水量也大;干噪气候区,最大降水高度大,降水量少。例如,喜马拉雅山最大降水高度为1000~1500m,阿尔卑斯山为 2000m,中亚地区为 3000m。在同一气候条件下,不同山脉,或同一山脉不同坡向,不同季节最大降水高度也不同。

(3)迎风坡多雨,为“雨坡”,背风坡少雨,为“雨影”例如,我国台湾山脉,东、北、南三面都迎海风,降水丰沛。年降水量都在2000mm以上,其中台北的火烧寮年降水量多达8408mm。青藏高原南坡迎西南季风,降水量也十分丰沛。恒河下游和布拉马普特拉河流域,年降水量普遍在3000mm以上。世界最多雨的印度乞拉朋齐,年降水量12700mm,最大年降水量达26461.2mm。

(4)山地多夜雨 山地多夜雨主要是指凹洼的河谷或盆地,以夜雨为主。因为夜间,地面辐射冷却,密度大的冷空气沿山坡下沉谷底,汇聚后被迫抬升,如果盆地中原来空气比较潮湿,则抬升到一定高度后即能成云并致雨。另外,河谷或盆地中,形成云之后,由于的辐射冷却,下沉的冷气又增强了河谷内的上升气流,因而地形性的夜雨较多。如我国四川盆地著名的巴山夜雨。拉萨、日喀则、西昌等地,夜雨也较多。但凸出的地形仍以日雨为主,且多对流雨。

中国地理的气候情况

一、露点(或霜点)温度: 露点温度指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。

二、绝对湿度 :①空气里所含水汽的压强,叫做空气的绝对湿度。

②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。

说明:①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。

三、相对湿度 :①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。

②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。

(2)说明 :①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。

②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。

四、露点 :①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。

②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。

(3)说明 :①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。

五、露点温度本是个温度值,用它来表示湿度是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。气温降到露点以下是水汽凝结的必要条件。

我国纬度位置的优越性是什么?

1.气候复杂多样

中国幅员辽阔,跨纬度较广,距海远近差距较大,加之地势高低不同,地形类型及山脉走向多样,因而气温降水的组合多种多样,形成了多种多样的气候。从气候类型上看,东部属季风气候(又可分为亚热带季风气候、温带季风气候和热带季风气候),西北部属温带大陆性气候,青藏高原属高寒气候。从温度带划分看,有热带、亚热带、暖温带、中温带、寒温带和青藏高原区。 从干湿地区划分看,有湿润地区、半湿润地区、半干旱地区、干旱地区之分。而且同一个温度带内,可含有不同的干湿区;同一个干湿地区中又含有不同的温度带。因此在相同的气候类型中,也会有热量与干湿程度的差异。地形的复杂多样,也使气候更具复杂多样性。

2.季风气候显著

中国的气候具有夏季高温多雨、冬季寒冷少雨、高温期与多雨期一致的季风气候特征。由于中国位于世界最大的大陆——亚欧大陆东部,又在世界最大的大洋——太平洋西岸,西南距印度洋也较近,因之气候受大陆、大洋的影响非常显著。冬季盛行从大陆吹向海洋的偏北风,夏季盛行从海洋吹向陆地的偏南风。冬季风产生于亚洲内陆,性质寒冷、干燥、在其影响下,中国大部地区冬季普遍降水少,气温低,北方更为突出。夏季风来自东南面的太平洋和西南面的印度洋,性质温暖、湿润、在其影响下,降水普遍增多,雨热同季。中国受冬、夏季风交替影响的地区广,是世界上季风最典型、季风气候最显著的地区。和世界同纬度的其他地区相比,中国冬季气温偏低,而夏季气温又偏高,气温年较差大,降水集中于夏季,这些又是大陆性气候的特征。因此中国的季风气候,大陆性较强,也称作大陆性季风气候。

气候条件的优势 复杂多样的气候,使世界上大多数农作物和动植物都能在中国找到适宜生长的地方,使中国农作物与动植物都非常丰富。

玉米的故乡在墨西哥,引种到中国后却广泛种植,已成为中国重要的粮食作物之一。红薯最早引种在浙江一带,在中国普遍种植。

中国季风气候显著的特征,也为中国农业生产提供了有利条件,因夏季气温高,热量条件优越,这使许多对热量条件需求较高的农作物在中国种植范围的纬度远比世界上其他同纬度国家的偏高,水稻可在北纬52°的黑龙江省呼玛县种植。夏季多雨,高温期与多雨期一致,有利于农作物生长发育,中国长江中下游地区气候温暖湿润,物产富饶,是亚热带季风气候,而与之同纬度的非洲北部、阿拉伯半岛等地却多呈干旱、半干旱的荒漠景观。

中国气候虽然有许多方面有利于发展农业生产,但也有不利的方面,中国灾害性天气频繁多发,对中国生产建设和人民生活也常常造成不利的影响,其中旱灾、洪灾、寒潮、台风等是对中国影响较大的主要灾害性天气。

中国的旱涝灾害平均每年发生一次,北方以旱灾居多,南方则旱涝灾害均有发生。

在夏秋季节,中国东南沿海常常受到热带风暴——台风的侵袭。台风(热带风暴发展到特别强烈时称为台风)以6—9月最为频繁。

在中国的秋冬季节,来自蒙古、西伯利亚的冷空气不断南下,冷空气特别强烈时,气温骤降,出现寒潮。寒潮可造成低温、大风、沙暴、霜冻等灾害。 1.冬季气温的分布

从1月等温线图可看出:0℃等温线穿过了淮河—秦岭—青藏高原东南边缘,此线以北(包括北方、西北内陆及青藏高原)的气温在0℃以下,其中黑龙江漠河的气温在-30℃以下;此线以南的气温则在0℃以上,其中海南三亚的气温为20℃以上。因此,南方温暖,北方寒冷,南北气温差别大是中国冬季气温的分布特征。

这一特征形成的原因主要有: 纬度位置的影响 冬季阳光直射在南半球,中国大部处于北温带,由太阳辐射获得的热量少,同时中国南北纬度相差达50℃,北方与南方太阳高度差别显著,故造成北方大部地区气温低,且南北气温差别大。

冬季风的影响 冬季,从蒙古、西伯利亚一带常有寒冷干燥的冬季风吹来,北方地区首当其冲,因此更加剧了北方严寒并使南北气温的差别增大。

2.夏季气温的分布

从中国夏季7月等温线图上可以看出:除了地势高的青藏高原和天山等以外,大部地区在20℃以上,南方许多地方在28℃以上;新疆吐鲁番盆地7月平均气温高达32℃,是中国夏季的炎热中心。所以除青藏高原等地势高的地区外,中国普遍高温,南北气温差别不大,是中国夏季气温分布的特征。

其形成原因有:夏季阳光直射点在北半球,中国各地获得的太阳光热普遍增多。加之北方因纬度较高,白昼又比较长,获得的光热相对增多,缩短了与南方的气温差距,因而中国中国普遍高温。

3.中国的温度带

中国用积温来划分温度带,当日平均气温稳定升到10℃以上时,大多数农作物才能活跃生长,所以通常把日平均气温连续≥10℃的天数叫生长期。把生长期内每天平均气温累加起来的温度总和叫积温。一个地区的积温,反映了该地区的热量状况。根据积温的分布,中国划分了5个温度带和一个特殊的青藏高原区。 不同的温度带内热量不同,生长期长短不一,耕作制度和作物种类也有明显差别。

温度带的划分及耕作 温度带 ≥10℃积温 生长期(天) 分布范围 耕作制度 主要农作物 热带 >8000℃ 365 海南全省和滇、粤、台三省南部 水稻一年三熟 水稻、甘蔗、天然橡胶等 亚热带 4500℃—8000℃ 218—365 秦岭—淮河以南,青藏高原以东 一年二至三熟 水稻、冬麦、棉花、油菜等 暖温带 3400℃—4500℃ 171—218 黄河中下游大部分地区及南疆 一年一熟至两年三熟 冬麦、玉米、棉花、花生等 中温带 1600℃—3400℃ 100—171 东北、内蒙古大部分及北疆 一年一熟 春麦、玉米、亚麻、大豆、甜菜等 寒温带 <1600℃ <100 黑龙江省北部及内蒙古东北部 一年一熟 春麦、马铃薯等 青藏高原区 <2000℃  (大部分地区) 0—100 青藏高原 部分地区一年一熟 青稞等 1.年降水量的空间分布

从中国年降水量分布图可看出:800毫米等降水量线在淮河—秦岭—青藏高原东南边缘一线;400毫米等降水量线在大兴安岭—张家口—兰州—拉萨—喜马拉雅山东南端一线。塔里木盆地年降水量少于50毫米,其南部边缘的一些地区降水量不足20毫米;吐鲁番盆地的托克逊平均年降水量仅5.9毫米,是中国的“旱极”。 中国东南部有些地区降水量在1600毫米以上,台湾东部山地可达3000毫米以上,其东北部的火烧寮年平均降水量达6000毫米以上,最多的年份为8408毫米,是中国的“雨极”。

中国年降水量空间分布的规律是:从东南沿海向西北内陆递减。各地区差别很大,大致是沿海多于内陆,南方多于北方,山区多于平原,山地中暖湿空气的迎风坡多于背风坡。

2.降水量的时间变化

中国降水量的时间变化表现在两个方面,即:季节变化和年际变化。

季节变化是一年内降水量的分配状况。中国降水的季节分配特征是:南方雨季开始早,结束晚,雨季长,集中在5—10月;北方雨季开始晚,结束早,雨季短,集中在7、8月。中国中国大部分地区夏秋多雨,冬春少雨。

年际变化是年与年之间的降水分配情况。中国大多数地区降水量年际变化较大,一般是多雨区年际变化较小,少雨区年际变化较大;沿海地区年际变化较小,内陆地区年际变化较大。而以内陆盆地年际变化最大。

3.季风活动与季风区

中国降水在空间分布与时间变化上的特征,主要是由于季风活动影响形成的。发源于西太平洋热带海面的东南季风和赤道附近印度洋上的西南季风把温暖湿润的空气吹送到中国大陆上,成为中国夏季降水的主要水汽来源。

在夏季风正常活动的年份,每年4、5月暖湿的夏季风推进到南岭及其以南的地区。广东、广西、海南等省区进入雨季,降水量增多。

6月夏季风推进到长江中下游,秦岭—淮河以南的广大地区进入雨季。这时,江淮地区阴雨连绵,由于正是梅子黄熟时节,故称这种天气为梅雨天气。

7、8月夏季风推进到秦岭—淮河以北地区,华东、东北等地进入雨季,降水明显增多。9月间,北方冷空气的势力增强,暖湿的夏季风在它的推动下向南后退,北方雨季结束。10月,夏季风从中国大陆上退出,南方的雨季也随之结束。

在中国大兴安岭—阴山—贺兰山—巴颜喀拉山—冈底斯山连线以西以北的地区,夏季风很难到达,降水量很少,故唐诗中有“羌笛何须怨杨柳,春风不度玉门关”的名句。习惯上我们把夏季风可以控制的地区称为季风区,夏季风势力难以到达的地区称为非季风区。

4.中国的干湿地区

干湿状况是反映气候特征的标志之一,一个地方的干湿程度由降水量和蒸发量的对比关系决定,降水量大于蒸发量,该地区就湿润,降水量小于蒸发量,该地区就干燥。干湿状况与天然植被类型及农业等关系密切。中国各地干湿状况差异很大,共划分为4个干湿地区:湿润区、半湿润区、半干旱区和干旱区。 干湿地区的划分区域年降水量(mm) 干湿状况 分布地区 植被 土地利用 湿润区 >800 降水量>蒸发量 秦岭—淮河以南、青藏高原南部、内蒙古东北部、东北三省东部 森林 以水田为主的农业 半湿润区 >400 降水量>蒸发量 东北平原、华北平原、黄土高原大部、青藏高原东南部 森林——草原 旱地为主的农业 半干旱区 <400 降水量<蒸发量 内蒙古高原、黄土高原的一部分、青藏高原大部 草原 草原牧业、灌溉农业 干旱区 <200 降水量<蒸发量 新疆、内蒙古高原西部、青藏高原西北部 荒漠 高山牧业、绿洲灌溉农业

我国领土南北跨越的纬度近50度,大部分在温带,小部分在热带,没有寒带。南北的气候差异大、 为发展多种农业提供了有利条件。我国是海陆兼备的国家。

东临太平洋,使我国东部在夏季风湿润气流影响下,雨量充沛,有利于农业生产;沿海地区也便于发展海洋事业,同海外各国交往。西部深人亚欧大陆内部,使我国陆上交通能与中亚、西亚、欧洲直接往来。

我国地处中纬度,北温带,气候温和,有利于植物四季生长,发展农业。我国纬度跨度大,形成了从热带到寒温带丰富多样的自然景观,也形成了独特多样的人文景观。

扩展资料

中国位于亚洲东部、太平洋的西岸。领土辽阔广大,总面积约960万平方千米,仅次于俄罗斯、加拿大,居世界第3位,第四位为美国。差不多同整个欧洲面积相等。

中国的经纬度位置:中国领土南北跨越的纬度近50度,大部分在温带,小部分在热带,没有寒带。同整个欧洲面积相当。

中国领土的四端为:最东端在黑龙江和乌苏里江的主航道中心线的相交处(135°2′30’’E),最西端在帕米尔高原附近(73°29'59.79"E),最南端在立地暗沙(3°31‘00'N',东经112°17’09”E),(英语:Lidi Ansha或Lydi Shoal)为中国南海南沙群岛区域的一座暗沙,是实际上的中国领土的最南端(非位于其东北约15海里的曾母暗沙)。

按中华人民共和国行政区划,立地暗沙属于海南省三沙市管辖。最北端在漠河以北黑龙江主航道的中心线上(53°33′N,124°20′E)中国东西跨越经度60多度,最东端的乌苏里江畔和最西端的帕米尔高原高原相差5个时区。

中国地势西高东低,山地、高原和丘陵约占陆地面积的67%,盆地和平原约占陆地面积的33%。山脉多呈东西和东北一西南走向,主要有阿尔泰山、天山、昆仑山、喀喇昆仑山、喜马拉雅山、阴山、秦岭、南岭、大兴安岭、长白山、太行山、武夷山、台湾山脉和横断山等山脉。

西部有世界上最高大的青藏高原,平均海拔4000米以上,素有“世界屋脊”之称,珠穆朗玛峰海拔8844.43米,为世界第一高峰。在此以北以东的内蒙古、新疆地区、黄土高原、四川盆地和云贵高原,是中国地势的第二级阶梯。

大兴安岭一太行山一巫山一武陵山一雪峰山一线以东至海岸线多为平原和丘陵,是第阶梯。海岸线以东以南的大陆架,蕴藏着丰富的海底。

在中国辽阔的大地上,有雄伟的高原、起伏的山岭、广阔的平原、低缓的丘陵,还有四周群山环抱、中间低平的大小盆地。陆地上的5种基本地形类型,中国均有分布,这为中国工农业的发展提供了多种多样的条件。

通常人们把山地、丘陵和比较崎岖的高原称为山区。中国山区面积占中国总面积的2/3,这是中国地形的又一显著特征。山区面积广大,给交通运输和农业发展带来一定困难,但山区可提供林产、矿产、水能和旅游,为改变山区面貌、发展山区经济提供了保证。

从中国陆地的第阶梯继续向海面以下延伸,就是浅海大陆架,这是大陆向海洋自然延伸的部分,一般深度不大,坡度较缓,海洋丰富。

参考资料:

中国地理-百度百科