安徽省基层气象台站简史_安徽省气象局是什么单位
1.长辛店简史
2.钻井平台的发展简史
3.航空气象学的发展简史
4.地球有哪些特点
5.高空气象数据集有哪些?
6.发现水冰、揭秘火星大气,它们是唯二的火星侦察兵 | 火星探测简史
两个都是对的
当太阳上黑子和耀斑增多时,发出的强烈射电会扰乱地球上空的电离层,使地面的无线电短波通讯受到影响,甚至会出现短暂的中断。
太阳大气抛出的带电粒子流,能使地球磁场受到扰动,产生“磁暴”现象,使磁针剧烈颤动,不能正确指示方向。
地球两极地区的夜空,常会看到淡绿色、红色。粉红色的光带或光弧,这叫做极光。极光是带电粒子流高速冲进那里的高空大气层,被地球磁场捕获,同稀薄大气相碰撞而产生的。
太阳活动对地球的影响太阳活动有时比较平静,有时比较剧烈;太阳有自转,太阳上的活动区有时对向地球,有时又背向地球;地球本身有自转又有公转,因此太阳活动对地球的影响是很复杂的,周期也是各种各样的,如日周期、27天周期、年周期、11年周期等等。这里主要谈耀斑和快速变化的黑子群对地球的影响,小活动造成的影响及平静太阳对地球产生的各种各样的影响就不涉及了。
耀斑及黑子对地球的电离层、磁场和极区有显著的地球物理效应。
地球大气层在太阳辐射的紫外线、X射线等作用下形成电离层,无线电通讯的无线电波就是靠电离层的反射向远距离传播的。当太阳活动剧烈,特别是耀斑爆发时,在向阳的半球,太阳射来的强X射线、紫外线等,使电离层D层变厚,造成靠D层反射的长波增强,而靠E层、F层反射的短波却在穿过时被D层强烈吸收受到衰减甚至中断,如l970年11月5日长途台曾因此中断2小时;这被称为“电离层突然骚扰”。这些反应几乎与大耀斑的爆发同时出现,因为电磁波的传播速度就是光速,大约8分多钟即可由太阳到达地球表面,所以反应非常快。经过一段肘间以后耀斑产生的带电的高能粒子逐渐到达地球,它们受地球磁场的作用向地磁极两极运动,因而影响极区的电离层,造成高纬度地区的雷达和无线电通讯的骚扰,甚至中断。这被称为“极盖吸收”和“极光带吸收”,它的影响时间较长。
整个地球是一个大磁场。地球的北极是地磁场的磁南极,地球的南极是地磁场的磁北极。地极和磁极之间有大约11度的夹角,因此地球的周围充满了磁力线,不同的位置有不同的地磁强度。平时地磁受多方面的影响,会有不同程度的扰动,而影响最大的就是磁暴现象。磁暴一般发生在太阳耀斑爆发后20-40小时,它是地磁场的强烈扰动,磁场强度可以变化很大。这时太阳风速往往增加,并且向太阳一面的磁层顶面可由距地心8-11个地球半径被压缩到5-7个地球半径,磁暴的发生对人类活动,特别对与地磁有关的工作都会受到影响。
在磁暴发生时,高纬度地区常常伴有极光出现。极光常常出现于纬度靠近地磁极地区25度-30度的上空,离地面100-300千米,它是大气中的彩色发光现象,形状不一(见课本前彩图)。常出现极光的区域称为极光区。由于来自太阳活动区的带电高能粒子流到达地球,并在磁场作用下奔向极区,使极区高层大气分子或原子激发或电离而产生光。当太阳活动剧烈时,极光出现的次数也增大。
太阳活动与地球上气候变化的关系也是比较明显的,据统计,地面降水量的变化,也有11年、22年等的周期,另外地球高层大气的变化也与太阳活动相关。地震、水文、气象等多方面的研究都说明了太阳活动对地球的影响,关于这方面的物理机制还在研究中。
大耀斑出现时射出的高能量质子,对航天活动有极大的破坏性。高能质子达到地球附近肘,特别是容易到达无辐射带保护的极区,会影响极区飞行;如遇卫星则对卫星上的仪器设备有破坏作用;太阳能电地在高能质子的轰击下,性能会严重衰退以至不能工作;如遇在飞船外工作的宇航员将危及生命。。
由以上种种影响可以看出,对太阳活动的预报有很大的必要。现在包括我国在内的许多国家,都已开展这方面的工作。通过预报可使有关部门,如:通信部门、航天部门等,及时采取措施减少太阳活动对这些部门工作的影响,也为准确地进行天气、气候、水文、地震等预报提供资料。
长辛店简史
地球科学是一门既古老而又年轻的科学。说其古老,是因为有关地球科学知识的萌芽与积累从人类诞生的那天起就已开始;说其年轻,是因为地球科学的主要学科的真正创立只是最近几个世纪的事情,并且迄今为止,地球科学虽已发展成为一个较为完善的科学体系,但其中仍存在许多重大基础理论问题未获解决,并且还不断地涌现出新的重大科学问题。地球科学的发展历史大致可分为三个阶段,即:古代地球科学知识的萌芽与积累阶段(17世纪以前)、地球科学的主要学科的创立与初步发展阶段(17~19世纪)、地球科学的革命与全面发展阶段(20世纪至今)。现今地球科学正处在一个革故鼎新的关键时期,可以预见,在不远的将来,地球科学将进入一个全新的、更成熟的发展新阶段。
(一)古代地球科学知识的萌芽与积累(17世纪以前)
有关地球科学的知识与人类生活密切相关,其思想的萌芽可以追溯到远古时代。随着人类文明的发展,地球科学知识也得到了不断积累。我国是具有悠久历史的文明古国,其地球科学思想萌芽之早、知识积累之丰富是任何其他国家都不能比拟的,现仅举几例,可见一斑。
《禹贡》、《山海经》、《管子》是成书于春秋战国时代(公元前770~公元前221年)的最早一批有关地理、地质、水文、气象的著作。《禹贡》记载了公元前21世纪大禹治水时候所了解的全国各地的矿产情况和山川地形。《山海经》除记述了山岳、河流、湖泊、沼泽、气候与气象等之外,还记述了岩石(矿石)及矿物(金属与非金属矿物)72种,矿产地440多处,此书把矿产划分为金、玉、石、土四大类,这是世界上最早提出的矿产分类。《管子》一书曾对金属矿床与找矿知识有精辟论述,指出了利用矿物共生组合及“铁帽”等作为找矿标志的科学方法。该书还曾对河流的横向环流、侧蚀作用形成河曲的过程进行了正确分析。
东汉杰出的科学家张衡于公元132年创造了世界上第一台地震仪——候风地动仪,公元138年在洛阳用这台地震仪正确测出了发生在650 km外的陇西地震(图0-5)。
《水经注》是南北朝卓越的地学家郦道元在研究前人著作的基础上,结合自己的实际考察,于公元512~518年编写的著名地学著作。书中涉及地域广泛(包括中国及部分邻区),记述内容包括河流、瀑布、湖泊、风沙、溶洞、火山、地震、山崩、地滑、温泉、陨石、化石、矿物、岩石和矿产等多方面的地质、地理及水文等内容,至今仍有参考价值。
图0-5 张衡的候风地动仪及简要原理
(引自徐邦梁,1994)
宋朝沈括(1031~1095年)所著《梦溪笔谈》是一部百科全书式的光辉著作,其中涉及地球科学领域的包括陨石、地震、矿物、矿床、化石、河流、地下水、海陆变迁、地形测量和制图等多方面。例如,书中论述了流水的侵蚀作用与沉积作用;推断华北平原是由河流自上游搬运泥沙到下游沉积而形成的冲积平原;沈括还根据太行山东麓山崖间所见海生螺蚌化石,推断东距大海千里以外的该地在古代曾经是海滨;他还根据化石推测古地理、古气候的变迁。沈括对化石的正确认识比意大利人达·芬奇所提出的类似观点要早400年;他在分析地质问题时使用的古今类比法比莱伊尔《地质学原理》所应用的“将今论古”的方法要早700多年。沈括还首次使用“石油”这一科学术语,该术语被一直沿用至今。
《徐霞客游记》是明朝徐宏祖(1586~1641年)撰写的一部考察纪实性著作,书中对我国许多地区的岩溶、火山、温泉、水文、地貌及矿物等作了极有价值的记述。
《天工开物》为明代宋应星(1587~1661年?)所著,书中详细记载了非金属矿物的产地、形状及性质;并根据煤的硬度与挥发性提出了世界上较早的煤分类法;特别是第一次系统论述了我国采矿工程技术,对矿藏开采、井下支护、通风、矿井充填、矿石洗选等都有细致描述。
由此可见,我国古代地球科学思想非常活跃,积累了丰富的理论和实践知识,这一领域的研究与成就当居世界前列。但是由于我国封建社会(特别是后期)的闭关自守,重视习文读经,轻视生产技术和自然科学知识,搞文化专制统治,严重阻碍了科学的发展,使近代地球科学的一些主要学科没能在中国这片沃土上诞生。
国外古代地质知识的萌芽与积累主要集中于欧洲。
古希腊学者毕达哥拉斯(约公元前571~公元前497年)、亚里士多德(公元前384~公元前342年)、狄奥弗拉斯特(公元前370~公元前287年)等都曾对火山喷发、地震和尼罗河三角洲的形成进行了观察和解释,并根据岩层中的贝壳化石得出海陆变迁的概念,他们还对部分岩石、矿物作了初步分类和描述,还对一些天气现象作过适当的描述与解释。
古罗马的斯特拉波(Strabo,公元前63~公元20年)著有《地理学》,书中论及了有关化石、海陆变迁、火山、地震、河流的搬运与沉积作用等许多方面的地质问题。老普里尼(Pliny the Elder)于公元77年著出《自然史》,书中曾对矿物进行了专门论述,包括当时使用的各种矿物、建筑用石材、矿石及矿床、采矿及冶金方法等。同时代的西尼卡(Seneca)著有《自然问题》等书,论述了有关地震、地下水和地面水问题,认识到河流对山谷的侵蚀作用。
14~16世纪欧洲的“文艺复兴”运动给地球科学的发展带来了生机,为地球科学的一些主要学科的创立准备了条件。
15世纪末至16世纪初,哥伦布、麦哲伦等相继环球航海成功,证实地球是球形,并对大洋和大陆的轮廓有了初步了解。1530~1540年,哥白尼写成了《天体运动》这一伟大著作,提出了“太阳中心说”。这对该时期的地球科学研究起了重要促进作用。
意大利艺术家达·芬奇(1452~1519年)早年曾领导开凿运河工程,他对化石进行了细致的观察和研究。他认为,现今内陆或高山上发现的海生贝壳化石,是原先生长在海水中的生物,后来埋藏在泥沙中而形成,并由此推测海陆变迁历史。他还明确指出,地球是一本书,这本书早于文字记载,科学的任务就是辨读地球自身的历史痕迹。
德国的阿格里柯拉(Agricola,1494~1555年)一生著有七部地质专著,除了叙述德国采矿业的发展以外,还根据矿物的物理性质对其进行分类,对矿物与金属矿床的形成及相互关系作了论述,并涉及古生物学等问题。后人誉之为“矿物学之父”。
(二)地球科学的主要学科的创立与初步发展(17~19世纪)
对于气象学,从古代到16世纪只限于零碎的定性观察和描述,还谈不到独立的科学。17世纪,由于工业和自然科学的发展,特别是物理学的成就,使较精密的气象仪器相继发明,有关气象学的理论也得到很大提高,使气象学逐步发展成为独立的科学。
意大利物理学家和天文学家伽利略(Galileo)于1593年发明了温度表,意大利物理学家和数学家托里拆利(Torricelli)于1643年发明了气压表。由于有了温度表和气压表等气象仪器,1653年在意大利北部建立了气象观测站,以后许多国家也相继建立气象台站。由于广泛的气象观测,获得了丰富的资料,气象学的研究逐步深入。此后,随着无线电通讯技术的发展,使气象观测结果能很快地传到各地,给予编制和研究天气图以可能性。1860~1865年间天气图迅速发展起来。19世纪末,在小范围内已开始了高空探测的高空气象学。
在地球科学中,地质学的创立具有划时代的意义。欧洲18世纪开始进入产业革命时期,随着生产力的提高和近代工业化的急速发展,对矿产的需求日益增加,因而促进了找矿和地质调查工作,使地质知识与资料迅速积累,逐步形成了系统的地质学理论和研究方法,于是地质学作为一门独立的科学诞生了。
在地质学的创立过程中,学术思想论战曾起到了重要的促进作用。当时的论战是在“火成论”者与“水成论”者之间及“均变论”者与“灾变论”者之间进行的。
“水成论”者认为,组成地壳的所有岩石都是从原始海洋物质中结晶、沉淀形成的,他们否认地壳运动的存在,主张地球从取得现有形态以来没有发生过大的变化。“水成论”者的代表人物是德国弗莱堡矿业学院矿物学教授魏尔纳(A.G.Werner,1750~1817年),他对矿物学的研究有卓越贡献,由于他丰富的知识和口才,使他驰名欧洲,对传播地质学起了重要作用。魏尔纳1775年在弗莱堡开始讲学,“水成论”兴起,由于他的声誉和拥有众多门生及崇拜者,加之教会的支持,使得“水成论”在18世纪后期的欧洲占据统治地位。
“火成论”者的代表是苏格兰地质学家赫顿,他发现花岗岩脉穿插在沉积岩中呈侵入接触关系(有烘烤及冷凝边),认为除沉积岩外,还有岩浆岩和变质岩,并认为地壳处于不断的演变之中,这一过程是缓慢的,过去发生的变化和现代进行的演变过程是类似的。他较正确地论述了三大岩类的成因及地壳运动的影响。赫顿1785年发表最初的《地球理论》论文,提出“火成论”,1795年重新发表《地球理论》著作,系统论述了自己的观点。该书为地质学的创立奠定了基础。
自此,“水成论”与“火成论”的论战愈演愈烈,随着人们了解到更多的地质现象,到19世纪初,“水成论”观点逐渐被抛弃,“火成论”取得了胜利。
“灾变论”者的代表是法国学者居维叶(D.G.Cuvier,1769~1832年),他在研究巴黎盆地地层中的生物化石时发现,在相隔很近的岩层中动植物化石群的种属有显著差异,曾经一度出现的古生物种属,后来竟完全绝灭而代之以新的种属;他还看到较老岩层发生褶皱,上面盖以水平的沉积岩层。于是他便认为地壳曾经发生巨大变革,产生世界规模的大灾变,致使地形改变、生物灭绝,以后在一定的时间内又重新创造出新的动植物来;地球上曾经历了多次这样的大灾变和再创造过程;最后一次大灾变发生在五六千年以前,并造就了地球的现今面貌和生物特征。居维叶的“灾变论”强调地质发展过程中的突变阶段,虽有合理成分,但他否认地球的渐近发展过程,并把其演变历史归结为古今没有联系的一系列不可知的突然事件。居维叶的重复创造与不可知的观点,特别是最后一次灾变的时间与圣经中论述的“大洪水期”和“诺亚方舟”神话一致,因而受到了教会的欢迎,得到广泛传播。
与“灾变论”针锋相对的是生物进化论和地质学的“均变论”。法国学者拉马克(Lamark,1744~1829年)在研究巴黎盆地第三纪古生物化石时,发现生物的种与种之间有过渡关系,某些种属是由另一种属发展而来的,并有由低级种属向高级种属演变的规律。他认为生物进化过程是极其漫长的,它与地球的演变历史同时进行。英国地质学家莱伊尔继承了赫顿的思想,经过与“灾变论”的多次论战,在结合前人成果及大量实际资料的基础上,于1830年出版的《地质学原理》第一册中明确提出了地质学的现实主义原则(即“将今论古”),指出地球的发展历史是漫长的,解释地球的历史用不着求助于上帝和灾变,那些看来非常微弱的地质动力,经过长期缓慢的作用过程,就能使地球面貌发生巨大变化。这就是“均变论”的主要思想。
随着《地质学原理》一书的问世,“均变论”的思想逐渐取代了“灾变论”,现实主义原则也成为了地质学方法论的一条基本原则。但是“均变论”强调“古今一致”与渐近发展的同时,本身又存在忽视在地壳发展过程中有飞速发展阶段(突变)的片面性。
莱伊尔的《地质学原理》(共三册)是一部划时代的著作,它确定了地质科学的概念,总结了地质科学的研究方法,初步建立了地质科学的体系,是地质科学创立的标志。自此以后,地质科学进入初步发展时期,到19世纪末已获得了很大进展。在研究地壳的物质组成方面,用显微镜研究岩石和矿物的方法得到充分发展,地球化学的工作也逐渐开展起来。
在研究地壳的演化历史方面,逐渐建立起了比较完善的相对地质年代表。北美学者霍尔、丹纳根据对美国东部造山带的研究,提出了“地槽”学说,对地质学研究产生了深远的影响。在地质学的应用方面,矿床学进一步发展,并诞生出了石油地质学。地震地质学、工程地质学等也开始逐渐发展起来。
17世纪德国地理学家瓦陵尼阿士(1622~1650年)的《普通地理学》开始介绍哥白尼、伽利略的“太阳中心说”,提出专论地理学和通论地理学的区别。前者描述特定地区,后者阐述一般原理。18世纪末至19世纪初,德国洪堡德(1769~1859年)与李特尔(1779~1859年)奠定了近代地理学的基础。
洪堡德的代表作是《宇宙:世界的自然描述概略》,共五卷。他最早采用计算气象要素平均值的方法研究气候,提出等温线的概念,1817年绘制出第一幅世界年平均温度分布图,提出大陆东西两端的气候差异和海洋性气候、大陆性气候类型。他观测了地势升高100 m气温下降0.6 ℃的垂直递减现象,研究气候与植物分布、类型的关系,提出平原植物分布的水平地带性和山地植物分布的垂直地带性。他最早运用地形剖面图和地理比较法研究地理现象的规律性,奠定了自然地理学特别是气候学与植物地理学的一般原理。
李特尔通过区域描述和地面现象综合比较,研究地理环境对人类活动的影响。他强调地理学要以人地关系为主旨,提出比较地理学的概念。1817年李特尔的《地理学》第一卷出版,到1859年共出版19卷。
此后,地理学得到了进一步发展。德国地理学界比较著名的学者和学派有拉采尔的“地理环境论”、赫特纳的“地理学方法论”等。法国比较重要的地理学派有维达尔·白兰士和白吕纳的“人地相关论”等。美国著名的地理学说有戴维斯(W.M.Davis,1899)的“地貌侵蚀循环说”,该学说主张陆地自然面貌是由侵蚀造成,认为地表形态是连续的,又有阶段的,是地球内部结构与外部营力的结合。他把河流发育分成青年期、壮年期和老年期,地壳上升使河流复活。他的学说奠定了自然地理分析的基础。
(三)地球科学的革命与全面发展(20世纪至今)
20世纪以来是现代地球科学发展的新时期,在这一时期,传统的地球科学发生了一系列的革命,其中影响最为深远的是固体地球科学(包含地质学和地球物理学等)的革命。
固体地球科学的革命主要是大地构造理论上围绕活动论与固定论发生的思想革命。传统的地质观念认为,大陆及海洋只在原来的位置上作垂直升降运动,其相对位置未发生显著变化,故被称为“固定论”,“地槽”“地台”说是其典型代表。“活动论”者认为,大陆曾有过长距离的水平运动,大陆和海洋的相对位置是不断变化的。代表“活动论”的大地构造学说是“大陆漂移—海底扩张—板块构造学说”。经过近半个世纪的争论,到20世纪60年代末期,以现代地质及地球物理研究成果为基础的板块构造学说取得了决定性的胜利,并由此推动了地质学与地球物理学领域的一场深刻革命。
与此同时,随着科学技术的进步,20世纪以来的地质学获得了前所未有的全面发展。高温高压实验技术、同位素地质年龄测定技术、电子计算机、电子显微镜、大陆超深钻与深海钻探技术等给地质学的发展以极大的推动作用,使地质学逐步由定性描述与分析向半定量、定量分析与研究发展。地球物理、地球化学方法在研究地球及地壳的物质组成、结构构造及运动特征方面取得了丰硕成果,成为推动地质学发展的强大动力。航天技术在地质学上的应用取得了重大成就,以航天技术为基础的新兴的天文地质学显示出旺盛的生命力。这些研究将为人类最终了解地球起源与演化、解决许多重大地质问题发挥重要作用。
地质学的应用是促进地质学发展的动力,20世纪以来除传统的矿床学不断发展,提出了许多新理论之外,石油地质学的发展尤其令人瞩目。水文地质、工程地质、地震地质等的研究也发展迅速。特别是20世纪中期以来,环境地质研究的重要性越来越引起人们的注意,正在向纵深方向发展。
20世纪以来在地理学上也发生了重要的革命,特别是研究方法与手段上的革命,通常称为地理学的计量革命。20世纪50年代,地理学开始采用现代数学方法分析地理问题。1955年,美国华盛顿大学地理系在加里逊主持下开设第一个应用数理统计研究班,推动计量地理学发展。1963年,伯顿提出“计量革命”口号,使这一趋势推向欧洲和全球。地理学计量革命的实质是用现代数学方法和计算机,运用模型和模拟,使地理学的理论精确化,计算快速化,从传统的定性分析向定性和定量分析相结合过渡。20世纪60年代以来,在计量革命的推动下,人们把地理环境和区域看作是一个系统,大量地应用计算机、遥感、遥测等新方法,对系统及其相互作用进行模式化、公式化,用数字、图像等定量表达人地关系,说明区域差异与变化,从而对地理环境的演化进行科学预测,以期达到人地关系的最优化。这就是“地理信息系统(GIS)”的成功开发与广泛应用。这样,使地理学由以前的现象描述发展到科学解释和定量预测的新阶段。与此同时,由于社会的需要,应用性的地理分支学科大量涌现,如工程地理学、环境地理学、资源地理学、应用景观学等。
20世纪以来气象学的革命性变化更加突出。在20世纪的前50年,气象观测开始由传统的地面观测向高空发展,主要以风筝、气球等为高空观测工具,其所达到的高度是有限的。20世纪50年代以后,由于观测系统有了激光、雷达、人造地球卫星等新技术与新手段,大大地推进了气象学的发展。大规模的综合遥测、遥感,使得几小时的短期灾害性天气预报不再是纯预报问题,而变成了对实况的跟踪与真实预报。计算机的大量利用,使得对大气现象定量地进行数值模拟成为现实。这些研究的进步也大大促进了气象学基础理论的发展。
地球科学的全面、飞速发展,还使得20世纪以来诞生了一些新兴的分支学科,如地球物理学、地球化学、海洋学、环境地学、地球系统科学等。海洋学与环境地学都与人类现今的生活、生存及未来的发展有着极其紧密的联系,因而受到科学工作者及整个社会的高度重视,它们在地球科学中的地位也愈来愈重要。20世纪后期,随着地球科学综合性、系统性研究的深入,地球系统科学这一分支学科逐渐兴起和发展起来。地球系统科学把地球看成为一个由多个层圈子系统组成的统一、复合系统,强调用系统论的观点综合性、整体性研究整个地球系统(包括各子系统)的过去、现在及未来的行为。
(四)地球科学的发展展望
21世纪将是人类社会发展史上的一个巨大变革时代。现今地球科学的发展正在进入一个建立新知识体系的重大转折时期。
长期以来,地球科学在社会中的作用主要是通过研究地球,指导寻找矿产、能源和各种自然资源,以保证人类和社会发展对资源的需求;而对于自然环境方面的应用则处于从属的地位。由此建立起来的地球科学知识体系可概括为“资源型”的知识体系。但是,随着社会发展,当代社会正面临着人口、资源、灾害和环境方面的挑战,它直接威胁着今后社会的进步和人类的生存条件。在这些挑战面前,地球科学除要解决能源和矿产问题外,还必须帮助解决当今社会生活中面临的许多重大问题:减轻自然和人为灾害、寻找和保证充足干净的水源、安全处理有毒有害和放射性废物以及为合理利用自然资源、为环境污染的综合治理、为保护生态环境、为国土整治和农业发展等等提供地学知识和服务。所有这一切,都将促使地球科学从“资源时代”进入“环境时代”和“社会综合应用时代”。因而要求其社会功能由“资源型”拓宽到“社会型”。与此相适应,地球科学的主要任务和目标都将会发生相应变化。例如,1993年美国国家研究理事会发表了指导美国地球科学发展的战略报告,即《固体地球科学与社会》报告。该报告明确指出,固体地球科学今后的主要任务是:①了解全球系统所涉及的过程,特别注意地球系统各组成部分之间的联系和相互作用;②提供充足的自然资源(水、矿产和燃料);③减轻地质灾害;④调节全球和区域的环境变化。这份报告强调,地球科学研究的目标是了解整个地球系统过去、现在和未来的行为,以保证人类社会持续发展的条件。
地球系统科学的兴起正是地球科学为适应上述新形势而发展的结果。由于地球系统科学与地球的环境、资源、全球变化和人类可持续发展研究等结合紧密,代表着地球科学新的研究前缘和学科生长点,因而受到广大的科学工作者及全社会的极大关注。地球系统科学目前所涉及的重点研究内容主要有地球系统的相互作用与动力学、全球变化、数字地球、地球系统科学与人类可持续发展的关系等。地球系统科学研究已取得了许多重要进展,可以预见,其研究的深度、广度和应用前景将是不可估量的。
当然,地球系统科学并不能代替传统地球科学各分支学科的研究与发展,相反要求它们能更深入精确地研究和提供地球系统各组成部分自身的特征与规律性认识,以便进行系统分析和综合。因此,从某种意义上说,地球系统科学与地球科学各分支学科之间的关系是一种全局与局部、整体与部分的关系。
由上可见,未来的地球科学将成为关系到人类生存和社会发展的科学。地球科学的前景是光明的,它在社会发展中和在自然科学中的地位将会更加提高。因此,一些科学家大胆预言:“21世纪将是地球科学的世纪”。
钻井平台的发展简史
古镇长辛店位于北京市丰台区永定河西岸,卢沟桥畔,距天安门仅19公里,是西南距京城最近的乡镇,也是西南进京的必经要道。 长辛店地理位置
这是一条具有近千年历史的老街。追溯它成街的历史,恐怕比近在咫尺的卢沟桥建立的时间还要长。明清时期,这里曾是距离北京城最近的古驿站,也是进出北京西大道的门户,俗称九省御路。那时,街上商贾旅客云集,店铺酒肆林立,无论打店歇脚的商客,还是进京赶考的儒生,或是穷困潦倒的乞丐,三教九流,五行八作,混杂其间,人来人往,车马声啸,热闹非凡。近代,这里发生过二七大罢工,先烈的鲜血曾经染红过这条老街,给这条古老的街道增添了更加迷人的色彩。 如今,喧嚣一天的五里古街入夜后静谧的像一条睡龙,盘身抿须而卧。街道两旁的百年古槐在街灯的映照下长辛店比卢沟桥的历史还长些。相传宋代杨家将率大军向涿州进发,长辛店是必经之路,北京主要水系永定河也流经这里。明万历年间蒋一葵的《长安客话》中,对这条古道作了如下记叙:“中宫络绎驰丹毂,候伯新封就土疆,车马常百计,夫皂不可量,即索旗帜引,仍求鼓吹扬,武夫排道难,尘埃蔽穹苍……”《宛署杂记》和《帝京景物略》以及清代才子纪晓岚在他的《阅微草堂笔记》中,也都提到过长辛店。 明清时期,沿卢沟桥桥东以南至长辛店以北,酒肆林立、车水马龙。《儿女英雄传》管这里叫“常新店”。这里是京城官府人士出京和外埠官吏进京歇脚之地。因为这块地界什么人都有,多大官都住过,所以店家几乎天天是井水泼街,人人自扫门前土,总给人一种新气象之感,称为“常新”。 长辛店
小镇的地形地貌像一条小船,东西高峙,中间低洼,西山坡上有西峰寺,不过寺已荡然无存,只留下了名字。保留至今的一座建于金代的镇岗塔依然耸立。古塔周围汉白玉围栏浮雕上,刻有这座镇岗塔的记载。 相传云岗地区属龙脉所在,龙脊就在云岗制高点的土坡上。当初在此地建塔并不是因为龙的兴风作浪,而是唯恐龙脉塌陷或迁徙。有传说讲,自打镇岗塔建成后,这里风调雨顺,离它20多里的永定河历次水灾,从没有漫过长辛店。
编辑本段古镇名称由来
古时,北京小平原与华北大平原之间水网密布,河泊众多,沼泽散布其间,纵横交错,因而造成人马劳苦,车履难行,交通十分困难,成为南北交通的严重障碍。从内蒙古高原和东北平原到达北京小平原,只有沿太行山东麓山间的台地北上,才能顺利到达。而进入北京小平原之前,必须经过永定河上的渡口(卢沟桥建立之前)这唯一的通路,别无他择。随着南北交流的日益频繁,古老的渡口,也就是后来的卢沟桥,成为南北交通的重要枢纽。而渡河的前一站就是长辛店。 《宛署杂记》记载:“县之西南,出彰义门……又一里曰卢沟桥,又四里曰新店村,又一里曰赵村……”。“新店”为古时称谓,现在偶尔还能从老年人口中听到。明《熹宗实录》记载:“天启元年(1621年),御史李日宣议:于都门抵良乡界五十里,设长店、大井、柳巷(六里桥)等处。每五里设墩堡,宿兵十人,每有窃发协力救出”。上面所述的“长店”与“新店”就是现在的长辛店。在明代,长店与新店是两个相邻很近的村落,长店在南新店在北。随着南北交流日益扩大,使这两个村和村前街道空前繁荣起来。酒肆店铺摊棚林立,天长日久连成一片。而“长店”与“新店”的村名,被衍化为长辛店的街名保留到今天。 清雍正六年(1728年),修广安门石道。用二丈巨石,从广安门一直铺到长辛店的南关外。长辛店大街原有南、北两个门楼,门楼内称大街,门楼外称关外。也就是说,这条路一直铺到五里古街的最南端。上世纪六十年代中期,我和哥哥在伯父与父亲的带领下,走在这条巨石铺就通往卢沟桥的路上,对巨石已被磨砺成坑洼沟坎路面的印象至今记忆犹新。路面巨大的条石,在岁月车轮的碾压下,泛着乌黑发亮的光彩。从那时留存的御制碑文记载中得知:“周道如抵,其直如矢,是以达天下。……天下十八省所以朝觐、谒选、计偕、工贾来者,莫不遵路于兹。”因此,长辛店自古就是商贾云集的官府驿站处,明清以来,更是官差、行商各色人等往来络绎不绝的通路。,在地上留下斑驳陆离的光影。
航空气象学的发展简史
世界现代石油工业最早诞生于美国宾西法尼亚州的泰特斯维尔村。一个叫乔治·比尔斯的人于1855年请美国耶鲁大学西利曼教授对石油进行了化学分析,得出了石油能够通过加热蒸馏分离成几个部分,每个部分都含有碳和氢的成分,其中一种就是高质量的用以发光照明的油。1858年比尔斯请德雷克上校带人打井,1859年8月27日在钻至69英尺时,终于获得到了石油。从此,利用钻井获取石油、利用蒸馏法炼制煤油的技术真正实现了工业化,现代石油工业诞生了。 随着人类对石油研究的不断深入,到了20世纪,石油不仅成为现代社会最重要的能源材料,而且其五花八门的产品已经深入到人们生活的各个角落,被人们称为“黑色的金子”,“现代工业的血液”,极大地推动了人类现代文明的进程。高额的石油利润极大推动了石油勘探开采活动,除了陆地石油勘探外,对于海洋石油资源的开发也日益深入。近海石油的勘探开发已有100多年的历史。1897年,在美国加州Summer land滩的潮汐地带上首先架起一座76.2米长的木架,把钻机放在上面打井,这是世界上第一口海上钻井。1920年委内瑞拉搭制了木制平台进行钻井。1936年美国为了开发墨西哥湾陆上油田的延续部分,钻成功第一口海上油井并建造了木制结构生产平台,两年后,于1938年成功地开发了世界上第一个海洋油田。第二次世界大战后,木制结构平台改为钢管架平台。1964-1966年英国、挪威在水深超过100米、浪高达到30米、最高风速160千米/小时、气温至零下且有浮冰的恶劣条件下,成功地开发了北海油田。标志着人们开发海上油田的技术已臻成熟。目前已有80多个国家在近海开展石油商业活动,原油产量占世界石油总产量的30%左右。1897年,在世界上第一口海上钻井的旁边,美国人威廉姆斯在同一个地方造了一座与海岸垂直的栈桥,钻机、井架等放在上面钻井。由于栈桥与陆地相连,物资供应就方便多了。另外,钻机在栈桥上可以随意浮动,从而在一个栈桥上可打许多口井。在海边搭架子,造栈桥基本上是陆地的延伸,与陆地钻井没有差别。能否远离岸边在更深的海里钻井呢? 1932年,美国得克萨斯公司造了一条钻井驳船“Mcbride”,上面放了几只锚,到路易斯安那州Plaquemines地区“Garden”岛湾中打井。这是人类第一次“浮船钻井”,即这个驳船在平静的海面上漂浮着,用锚固定进行钻井。但是由于船上装了许多设备物资器材,在钻井的时候,该驳船就坐到海底了。从此以后,就一直用这样的方式进行钻探。这就是第一艘坐底式钻井平台。同年,该公司按设计意图建造了一条坐底式钻井驳船“Gilliasso”。1933年这艘驳船在路易斯安那州Pelto湖打了“10号井”,钻井进尺5700英尺。以后的许多年,设计和制造了不同型号的许多坐底式钻井驳船,如1947年,john hayward设计的一条“布勒道20号”,平台支撑件高出驳船20多米,平台上备有动力设备、泵等。它的使用标志着现代海上钻井业的诞生。
由于经济原因,自升式钻井平台开始兴起,滨海钻井承包商们认识到在40英尺或更深的水中工作,升降系统的造价比坐底式船要低得多。自升式钻井平台的腿是可以升降的,不钻井时,把腿升高,平台坐到水面,拖船把平台拖到工区,然后使腿下降伸到海底,再加压,平台升到一定高度,脱离潮、浪、涌的影响,得以钻井。1954年,第一条自升式钻井船“迪龙一号”问世,12个圆柱形桩腿。随后几条自升式钻井平台,皆为多腿式。1956年造的“斯考皮号”平台是第一条三腿式的自升式平台,用电动机驱动小齿轮沿桩腿上的齿条升降船体,桩腿为×架式。1957年制造的“卡斯二号”是带有沉垫和4条圆柱形桩腿的平台。 随着钻井技术的提高,在一个钻井平台上可以打许多口井而钻井平台不必移动,特别是近海的开发井。这样,固定式平台也有发展。固定式平台就是建立永久性钻井平台,大都是钢结构,打桩,然后升出海面;也有些是水泥结构件。至今工作水深最深的固定平台是“Cognac”,它能站立在路易斯安那州近海318米水深处工作。
1953年,Cuss财团造成的“Submarex”钻井船是世界第一条钻井浮船,它由海军的一艘巡逻舰改装建成,在加州近海3000尺水深处打了一口取心井。1957年,“卡斯一号”钻井船改装完毕,长78米,宽12.5米,型深4.5米,吃水3米,总吨位3000吨,用6台锚机和6根钢缆把船系于浮筒上。用浮船钻井会带来一系列问题,由于波浪、潮汐至少给船带来三种运动,即漂移、摇晃、上下升沉,钻头随时可能离开井底,泥浆返回漏失,钻遇高压油气大直径的导管伸缩运动而不能耐高压等等。这样就把防喷器放到海底。该船首先使用简易的水下设备,从而把浮船钻井技术向前推进了一步。 浮船钻井的特点是比较灵活,移位快,能在深水中钻探,比较经济。但它的缺点是受风浪海况影响大,稳定性相对较差,给钻井带来困难。
1962年,壳牌石油公司用世界上第一艘“碧水一号”半潜式钻井船钻井成功。“碧水一号”原来是一条坐底式平台,工作水深23米。当时为了减少移位时间,该公司在吃水12米的半潜状态下拖航。在拖航过程中,发现此时平台稳定,可以钻井,这样就受到了启示,后把该平台改装成半潜式钻井平台。1964年7月,一条专门设计的半潜式平台“碧水二号”在加州开钻了。第一条三角形的半潜式平台是1963年完工的“海洋钻工号”,第二条是1965年完工的“赛德柯135”。
随着海上钻井的不断发展,人类把目光移向更深的海域。半潜式钻井平台就充分显示出它的优越性,在海况恶劣的北海,更是称雄,与之配套的水下钻井设备也有发展,从原来简单型逐渐趋于完善。半潜式钻井平台的定位一般都是用锚系定位的,而深海必须使用动力定位。第一条动力定位船是“Cussl”,能在12000英尺水深处工作,获取600英尺的岩心。以后出现了动力定位船“格洛玛·挑战者号”,它于1968年投入工作,一直用于大洋取心钻井。世界上真正用于海上石油勘探的第一条动力定位船是1971年建成的“赛柯船445”钻井船,工作水深在动力定位时可达600米以上。 半潜式平台有自航和非自航的。动力定位船所配套的水下设备是无导向绳的水下钻井设备。后来,钻井平台又有新的型式出现。如张力腿平台和“Spar”。科学在进步,时代在发展,海上钻井技术也在飞速发展,人们现在已向更深的海域进军,无论是钻井井深、钻井水深、钻井效率都有新的世界纪录出现。
中国海洋钻井平台发展概况
中国石油工业起步比较晚,上世纪50年代末,当时的石油部领导提出了“上山下海,以陆推海”的海洋石油发展大略。1963年,在对海南岛和广西地质资料进行详尽分析的基础上,决定在南中国海建造海上石油平台。此后的2年间,广东茂名石油公司的专家们用土办法制成了中国第一座浮筒式钻井平台,在莺歌海渔村水道口外距海岸4公里处钻了3口探井,并在400米深的海底钻获了15升原油。1966年12月31日,中国的第一座正式海上平台在渤海下钻,并于1967年6月14日喜获工业油流,从此揭开了中国海洋石油勘探开发的序幕。
1981年地矿部为了开展海洋石油勘探,决定建设一台半潜式的海洋钻井船,取名叫“勘探三号”。年6月由上海708研究所、上海船厂、海洋地质调查局联合设计,上海船厂建造的中国第一座半潜式钻井平台—勘探3号建成。其后转战南北,共打出15口海底油、气井。它为发现中国东海平湖油气田残雪构造,作出了重要贡献。
“勘探3”号由一座箱式甲板(亦称平台甲板)6根大型立柱、一座高大井架和两只潜艇式的沉垫组成的半潜式钻井平台。从沉垫底部到平台的上甲板有35.2米高,相当于一座12层的高楼,如果算到井架顶部总高有100米,总长91米,总宽71米,工作排水量219910吨,工作吃水20米,平台上装有900项,8600多台件机电设备。平台甲板被6根直径9米的主柱高高地托在高空,远远看去像是一座岛屿。它除了包括钻井、泥浆、固井、防喷系统在内的全套钻探设备外,还配置了4组(8台)150吨的电动锚机,5组660千瓦的柴油发电机组。同时,船上还配有潜水钟和甲板减压舱组成的200米饱和潜水系统,防火、防爆和可燃性气体自动报警系统等现代化设备。“勘探3”号平台上设有地质楼、报务室、应急发电机室、水文气象室、中心控制室和居住室等现代化的生活设施,水电通讯一应齐全,甲板顶还有可供直升飞机起降的停机坪。
半潜式钻井平台具有优良的抗风浪性能和较大的可变载荷,并可在较深海域进行钻探作业。当时世界上只有少数几个国家能建造,而且造价昂贵。为了能设计出适应中国大陆架实际情况的半潜式钻井平台,3个单位的设计人员收集了大量的水文气象资料,并通过深入实际的调查研究,对5种方案进行了严格筛选,最后正式确定采用矩形半潜式钻井平台的方案。其主要性能参数为;工作水深35~200米,最大钻井深度6000米。
年6月25日上午,“勘探3”号在中国最大的拖轮“德大”号的拖引下,离开上海港到东海温州湾外的海域进行各种性能试验。试验表明,“勘探3”号辐射状锚泊系统布置合理,十分适应该平台的精确定位和作业。其间“勘探3”号在试验的狂风巨浪中接受了中国船舶检验局和美国ABS船级社的入级签证,美国船级社的日籍验船师木下博敏把“勘探3”号称作为中国现代海上工程的标志。国外一般海洋钻探公司获悉中国有这样高质量的钻井平台后,纷纷前来探询租用或合资经营“勘探3”号钻探承包作业的可能性。
目前世界海洋石油的勘探开发主要集中在靠近陆地的称之为大陆边缘的部分。大陆边缘又分为大陆架、大陆坡和大陆隆三部分。中国大陆架是世界最宽的大陆架之一,总面积473万平方千米。据有关专家估计仅大陆架石油地质储量约250亿吨,天然气80000亿立方米。如果再考虑整个大陆边缘,其发展前景更不可限量。根据1994年的数据,中国海上采集地震测线57万公里,打探井363口,发现油气构造88个,获得石油地质储量11.88亿吨、天然气地质储量1800亿立方米,年产量达到了647万吨。目前年产油量2500万吨,年产气量约50亿立方米。
2008年6月6日,中国石油天然气集团公司宣布:目前全球最大的座底式钻井平台——中油海三号座底式钻井平台安全抵达冀东南堡油田。该平台投用后,将大大提高中国石油滩海地区勘探开发的能力。中油海三号是由中国石油海洋公司与上海708所联合研制,由山海关造船厂制造。该平台长78.4米,宽41米,上甲板高20.9米,空船总重量5888吨,适合10米以内水深的海上作业,是目前全球最大的座底式钻井平台。中国石油海洋公司组建于2004年11月,2006年,公司在渤海湾三个油田海上钻完井17口,试油试采11.2万吨,动用自有船舶8艘、外雇船舶19艘,安全完成了19次海上平台的拖航、移位。目前,中国石油海洋公司已拥有各类移动式平台七座,包括五座自升式钻井平台和两座生活平台,还有正在新加坡建造三座自升式钻井平台,预计将于2008—2009年间陆续完成。
目前中国正在设计、建造的超深水钻井平台(船)主要有:
一、由708所与上海外高桥造船厂设计、建造3000米工作水深的半潜式钻井平台。
二、中国船舶重工集团公司大连造船新厂建造了BG9000型4艘超深水半潜式钻井平台。
三、由中国与韩国合资的江苏韩通船舶重工有限公司承担建造、舍凡钻井公司(Sevan Drilling)拥有的“舍凡钻工(Sevan Driller)”号半潜式平台,工作水深达当前创世界纪录的12500英尺(3810米);中部具有双井架的、钻深能力亦达当前创世界纪录的40000英尺(12200米)超深井钻机;是世界第一艘SSP(即舍凡稳定性(减摇)钻井平台)。
四、由上海船厂与美国Frontter公司签订于2007年3季末以后开始建造4-5万吨动力定位深水钻井船。
以上均是中国垮入超深水钻井平台建造的重要标志,目前中国在建造平台、船体吨位总量方面仅次于韩国而居世界第2位,但在自行设计建造用于平台、船上的主机、特别是浮式钻井专用设备方面几乎还是空白,这需要国内海洋装备企业瞄准世界顶尖水平继续努力。 五、 “海洋石油981”是中国首次自主设计、建造的第六代3000米深水半潜式钻井平台,代表了当今世界海洋石油钻井平台技术的最高水平,堪称海工装备里的“航空母舰
2008年世界海洋工程装备市场概况
2008年.蓬勃发展的海洋工程装备制造业给萧条的船舶市场带来了一些惊喜。海工装备租赁市场的火爆不仅为海工企业带来了大量订单,也催生了一些像迪拜船厂这样的新船企。然而,受金融危机和油价下跌的双重夹击,世界海洋工程装备市场的发展前景仍然十分微妙。
2008年共有60套钻井装备成交,订造量再创近几年新高。这60套钻井装备包括自升式钻井平台26座、半潜式钻井平台15座、钻井船19艘。其中,深水装备占总订单量的比例从2007年的48%上升到2008~#的57%,成为投资重点。
自升式和半潜式钻井平台的建造主要集中在新加坡吉宝和胜科海事两大集团,其市场竞争优势明显。截至去年底,全球自升式钻井平台订单共计79座,而新加坡两大集团手持32座,市场占有率达41%;全球半潜式钻井平台订单共计55座,新加坡两大集团手持23座,市场占有率达42%。
钻井船订单则主要被韩国船企承揽。该市场在目前海洋工程装备建造领域是集中度最高的。截至2008年底,全球船企手持钻井船订单总计44艘,其中韩国四大船企(大宇、三星、现代重工、STX)手持订单达到41艘,市场占有率达93%。2008年,这四大船企更是包揽了全部订单。
中东地区近年来海洋开发逐渐升温,凭借多年积累的海工装备修理经验和资源优势,阿联酋船企迅速崛起,成为一支不可小觑的海工装备制造力量。在自升式钻井平台建造领域,目前阿联酋船企手持订单总数达21座,仅次于新加坡。
韩国占据FPSO新建市场的主导地位。截至2008年11月底,全球有超过7家建造商持有FPSO(包括FPSO新建和改装)的建造订单。从手持订单看,韩国依然占据FPSO新建领域的主导地位,三大船企(三星、现代、大宇)手持FPSO新建订单共计9艘,市场占有率达75%。三星重工是世界最大的FPSO建造厂商,目前手持7艘:FPSO订单,其中有4艘是FlexLNG公司订造的LNG—FPSO,目前全球仅三星重工在建造该型船。
从2008年下半年开始,愈演愈烈的全球金融危机对海工装备制造业的影响逐步显现。由于信贷紧缩、融资困难,一些海洋工程项目被迫推迟或取消,甚至出现了企业破产的情况。12月,要求海洋工程产品延期交付和订单取消的情况变得更加严重,多家海洋工程公司与新加坡吉宝集团协商取消订单。目前,新加坡吉宝集团已有价值4.5亿美元的1座半潜式钻井平台和1艘多用途工作船的订单被取消,另有2座自升式钻井平台订单还在协商。据报道,由于项目取消,已有一些原本用于改装FPSO的单壳油船被卖掉。
巴克莱公司最近发布的《全球勘探开发投资调查》表明,连续6年增长的全球油气勘探开发投资将在2009年减少12%,由2008年的4540亿美元减至4000亿美元,市场正在经历一轮大洗牌。
地球有哪些特点
早期的航空气象学主要着眼于地面风和对流层下部的气流对飞行的影响。当时的航线天气预报只包括:雷暴、总云量、地面风、高空风和能见度。20世纪20年代末,出现了无线电探空仪,人们开始能获取空中的温度和气压的资料,这对航空气象学的研究和发展有重要的促进作用。随着飞行高度的扩展,云、雾、雷暴、积冰、大气端流、大气能见度以及它们的预报方法,都成为航空气象学研究的内容。
第二次世界大战后,开始用雷达探测强对流天气,这对保障飞行的安全有重大的作用。50年代以后出现了喷气式飞机,其巡航高度一般可到9~12公里,超音速运输机的巡航高度可达20公里左右,飞机逐渐大型化,起飞着陆区和高空航线上气象条件的探测和预报成为重要的航空气象问题。随着气象仪器的更加完善,激光技术、气象卫星和电子计算机的使用,航空气象学的发展进入了一个新阶段。 航空气象服务始于20世纪20年代。1919年9月,国际气象组织在巴黎召开的第四届理事会上,决定建立航空气象学应用委员会,1935年在华沙召开的第七届理事会上决定把它改名为国际航空气象学委员会,1951年3月,世界气象组织又将国际航空气象学委员会改名为航空气象学委员会。随着飞机性能的提高,空中交通量的增大以及微电子技术的发展,航空气象服务的内容、方式和方法由早期的人工操作进入了当前自动化服务阶段。
1939年,中华民国航空委员会设立空军气象总台,1947年成立民用航空局,下设气象科和为数不多的机场气象台。直到1949年新中国成立之后,才建立了比较完善的航空气象组织,逐渐构成了装备有气象雷达、卫星云图接收装置、激光测云仪和移频通信、气象传真机等先进设备的航空气象台站网,在航空天气预报和航空气象服务方面开始有了较大的发展。
高空气象数据集有哪些?
进入21世纪,地球科学发展到“地球系统”的新阶段,强调地球岩石圈、水圈、大气圈和生物圈之间的相互作用,进而从整体地球系统的视野,对地球各圈层的相互作用过程和机理进行研究。当前更多的对地观测体系(卫星、地表台站等),更细的时空分辨率以及更强的数据处理(超级计算机),正逐渐促进人类对地球的科学认知,增强人类适应全球环境变化的能力,并服务于可持续发展!
地球的地质作用过程
一,地球系统科学的定义和特点
地球是一个物质与能量不断相互作用下的一个非常复杂的非线性系统,它可以被划分为几个基本的圈层,各圈层之间彼此交错相互影响,圈层之间及内部随时间的相互作用构成了地球的演化。
地球随时间的演化
1,地球系统的构成
地球系统指由大气圈、水圈(含冰冻圈)、地圈(含地壳、地幔和地核)、土壤圈和生物圈(包括人类)组成的有机整体。地球系统科学主要研究各圈层的物质组成、结构分布、各圈层内部及之间一系列相互作用过程和形成演变规律,以及与人类活动相关的全球变化,为人类认知地球和绿色可持续发展提供科学支撑,以应对全球环境变化所带来的挑战。
地球圈层构成
2,地球系统的能量来源
地球系统的演化主要受内动力地质作用和外动力地质作用的共同驱动,其主要有两个能量输入体系。一个是太阳在核聚变过程中向太阳系释放的太阳辐射能量,直接影响着地球气候变化、生物光合作用和岩石风化剥蚀等地球表层系统过程,是外动力地质作用最主要的能量供给;另外一个是地球内部放射性物质衰变、物质向地球深部迁移释放的重力势能和矿物结晶等释放的热量,对大陆漂移、海底扩张、板块运动、岩浆活动、地震作用、变质作用和构造运动等过程产生影响,是内动力地质作用最主要的能量供给。
地球的能量供给和圈层相互作用
3,地球系统的时空特征
地球作为一个由多时、空尺度过程构成的复杂巨系统,在空间上表现为多圈层体系。地球各圈层(岩石圈—土壤圈—大气圈—水圈—生物圈)、各过程(生物过程、物理过程、化学过程)、各要素(如:山水林田湖草海)之间相互作用、相互联系、连锁响应。地球系统科学将大气圈、生物圈、土壤圈、岩石圈、地幔/地核作为一个系统,通过大跨度的学科交叉,构建地球的演变框架,理解当前正在发生的过程和机制,预测未来几百年的变化。地球系统科学的研究对象,在空间尺度上可以从分子结构到全球尺度,在时间尺度上可以从数亿年的演化过程到瞬间的破裂变形。
地球演化的不同阶段,地质作用特征也不相同。在地球形成之初,由于小星体加积,星体之间的引力势能及其动能由于碰撞转化为热能,再加上放射性物质含量高,衰变速率快,产生了大量的热能。内动力地质作用十分发育,表层地球被岩浆海所覆盖,逐渐分异出地壳,地幔和地核。相比较而言太阳的较为昏暗,外动力地质作用较弱。现今地球在板块构造体制下,内动力地质作用依然很活跃,同时太阳光度增强,外动力地质作用也非常活跃。
地球形成初期的地质作用
不同时期具有不同的地质过程
同时地球系统的物理、化学及生物过程在空间上又可以分为许多子过程,各个过程彼此交错,相互影响。
Kppen的气候区分类
二,地球系统科学发展历史?1, 萌 芽 时 期
生物圈、生物地球化学的创始人,前苏联著名地球化学家维尔纳茨基(1863-1945),指出生物是地质营力的一部分,地圈与生物圈协同演化。他写到:“生命并非地表上偶然发生的外部演化。相反,它与地壳构造有着密切的关联,没有生命,地球的脸面就会失去表情,变得像月球般木然。”
维尔纳茨基及其著作
二十世纪七十年代,英国气象学家洛夫洛克认为生物与地球组成了一个类似生物的有机体,其拥有一个全球规模的自我调节系统,是一个“超级有机体”,强调生物圈对全球环境的调节作用,认为地球表面的气候和化学成分,由生物圈维持在一个最适宜生物圈的动态平衡中,并用希腊神话中大地女神“Gaia盖娅”命名这个控制系统。
洛夫洛克及地球演化简史
2, 从全球变化到地球系统科学
1,Keeling 曲线
美国斯克里普斯海洋研究所的Charles David Keeling于1958年,在夏威夷Mauna Loa火山顶部持续采样,检测大气CO2浓度,发现CO2浓度已经由1958年的318ppm上升到目前的411ppm,是近80万年以来CO2浓度最高值,在冰期时CO2浓度最低只有185ppm,因此这条著名的大气CO2浓度变化曲线又名“Keeling 曲线”。CO2作为最主要的温室气体,是导致全球变暖的主要原因。
David Keeling及Keeling 曲线
Keeling 曲线简介
2,南极臭氧层空洞
1985年,英国科学家Farman等人总结他们在南极哈雷湾观测站自1975年来的观测结果,发现从1975年以来,南极每年早春(南极10月份)总臭氧浓度的减少超过30%,在科学界引起震惊,从而使得南极臭氧层空洞问题广受关注。1987年世界多个国家签署《蒙特利尔议定书》,1989年1月1日正式生效,1996年,氯氟烃被正式禁止生产,截至目前臭氧层已经稳定下来并逐步开始恢复。
1979-2017年南极臭氧层卫星图
南极臭氧层恢复图及未来趋势预测
3,“地球系统科学”名词的首次提出
将地球作为整体、从圈层相互作用着眼的“地球系统科学”,源自“全球变化”的研究。20世纪80年代为应对“臭氧层空洞”、“温室效应”的威胁,首先由大气科学界发起,在全球范围内对碳循环等进行跨越圈层的追踪。1983年,美国国家航空航天局(NASA)建立了“地球系统科学委员会”;1986年NASA首次将地球系统科学(Earth system science)作为一个名词提出;1988年NASA出版了“Earth System Science: A Closer View",提出著名的“Bretherton图”,展示了大气、海洋、生物圈之间,在物理过程和生物地球化学循环的相互作用,标志着“地球系统科学”的起步。
“地球系统科学”名词的首次出现
3, 发展中的地球系统科学
1,国际全球变化研究计划
自二十世纪八十年代开始,国际科学界先后发起并组织实施了以全球变化与地球系统为研究对象,由四大研究计划组成的全球变化研究计划,即:世界气候研究计划(WCRP,World Climate Research Programme)、国际地圈生物圈计划(IGBP,International Geosphere-Biosphere Programme)、全球环境变化人文因素计划(IHDP,International Human Dimension of Global Environmental Change Programme)、生物多样性计划(DIVERSITAS)。进入新世纪,四大全球环境变化计划又联手建立了“地球系统科学联盟(ESSP)。
国际全球变化研究计划历史图解
2,未来地球计划(Future Earth)
2014年,为应对全球环境变化给各区域、国家和社会带来的挑战,加强自然科学与社会科学的沟通与合作,为全球可持续发展提供必要的理论知识、研究手段和方法,由国际科学理事会(ICSU)和国际社会科学理事会(ISSC)发起、联合国教科文组织(UNESCO)、联合国环境署(UNEP)、联合国大学(UNU)、Belmont Forum和国际全球变化研究资助机构(IGFA)等组织共同牵头,组建了为期十年的大型科学计划“未来地球计划(Future Earth)”。
未来地球计划(Future Earth)——全球可持续发展
3,政府间气候变化专门委员会(IPCC)
同时也为应对全球气候变化及其对社会经济的潜在影响和人类应对策略,1988年由联合国环境规划署(UNEP)和世界气象组织(WMO)共同成立了政府间气候变化专门委员会(IPCC)。IPCC负责评审和评估全世界产生的有关认知气候变化方面的最新科学技术和社会经济文献,目前IPCC有三个工作组和一个专题组。第一工作组的主题是气候变化的自然科学基础,第二工作组 是气候变化的影响、适应和脆弱性,第三工作组是减缓气候变化。国家温室气体清单专题组的主要目标是制订和细化国家温室气体排放和清除的计算和报告方法。
IPCC运作构架
4,人类世(Anthropocene)
工业革命以来,人类活动已经逐渐成为主要的地质营力。农业耕作、城镇化以及道路交通等建设大大改变了原有的地表形态;化石燃料燃烧排放的温室气体,改变大气圈的化学组成,对气候系统造成了显著影响。自1970年来,世界人口从37亿人增长到76亿人;全球CO2排放量从149亿吨增长到368亿吨;由大气CO2升高导致的海洋酸化,导致了近海生态系统发生了退化,尤其是造礁珊瑚;全球地表温度增加了约0.97度;海表面温度增加了约0.6度;每十年,北极海冰消融约13.2%;全球海平面上升了14.4cm。我们比1970年,多生产了约15倍的塑料制品,海洋中共累积了约1.5亿吨的塑料垃圾。地球已逐渐进入新的地质时代——“人类世”(Anthropocene)。2015年12月,全球197个国家在巴黎气候变化大会上达成《巴黎协定》,决定共同减少全球碳排放,应对全球气候变暖。此时地球系统科学已经牢牢地扎根在应对全球环境变化的社会需求和地球与生命科学相结合的基础之上。
人类世(Anthropocene)简介
5,横跨时空的地球系统科学
2001年,英、美两国的地质学会在爱丁堡联合举办了“地球系统过程(Earth System Process)”国际大会,将“全球变化”的概念上推了几十亿年,从太古代光合作用的起源,一直到近代暖池演变的气候效应。与“全球变化”不同,这里说的“地球系统科学”不但穿越圈层,而且横跨时空,将“全球变化”的概念应用于地质演变,在探索圈层相互作用的同时,研究时间和空间不同尺度的变化过程,揭示不同尺度过程的驱动机制和相互关系。地球系统概念进入地质科学,不但是全球变化研究圈层相互作用在时间上的延伸,更标志着地质科学进入集成研究的新时期。
2001年地球系统过程(Earth System Process)国际大会
三,地球圈层相互作用举例?1, 生物圈与大气圈及地圈相互作用
大氧化事件与条带状铁建造的形成
大约在24亿年前,大气中的游离氧含量(以相当于现代大气圈的分压表示,PAL=Present Atmosphere Level)突然增加,由一个极低的水平急剧增至现在浓度的10%,随后保持在一个稳定水平直至8.5亿年前,被称为“大氧化事件”(Great Oxygenation Event,GOE),8.5亿年前,氧气含量再次增加,被称为“新远古代氧化事件”(Neoproterozoic Oxygenation Event,NOE)直至达到约当前的水平。目前传统观点认为,海洋中的蓝细菌通过光合作用,使之前还原性的地表环境逐渐变为氧化环境。GOE是前寒武时期的一次重大地质事件,导致大量厌氧生物的灭绝,真核生物渐渐繁盛,多细胞生物逐渐出现并发展,改变了海洋化学环境,使得大量条带状铁建造(Banded Iron Formations,BIFs)形成(BIFs是全世界储量最大 、分布最广的铁矿类型),是地球表层系统的一次全面变革。
2, 地圈与大气圈及水圈等相互作用
1,海陆分布格局演化
地球气候系统不仅受太阳辐射纬度分布等的外部影响,同时也受海陆分布及地形等下垫面因素的影响。1912年,德国天文学家阿尔弗雷德魏格纳于发表论文提出大陆漂移假说,之后随着海底扩张和板块构造理论的提出,人们发现地球的大陆和海洋面貌也可以发生翻天地覆的变化。大陆是地球在长期复杂地质作用过程中,由各种不同块体与组分,历经多次改造而成的复杂拼合体,在地质历史时期,呈现出不同的海陆分布格局,如地球曾经可能存在过4次超大陆(地球上所有陆地几乎拼合在一个块体之上),从老到新依次为基诺兰(Kenorland,26-24亿年)、哥伦比亚(Columbia,19-18.5亿年)、罗迪尼亚(Rodinia,10亿年)和联合大陆(Pangaea,2.5亿年)。
2,联合大陆的超级季风
从二叠纪到早侏罗世(约2.5-1.8亿年前)的联合大陆(Pangaea),由北半球的劳亚大陆和南半球的冈瓦纳大陆在赤道附近连接而成,尤以三叠纪早期为最盛。模拟结果显示出全球(全大陆)规模的“超级季风(Megamonsoon)”:冬、夏出现方向相反的季风,ITCZ在联合大陆上作大幅度的迁移,雨量集中在特提斯洋附近,内陆降雨量几乎为零,联合大陆气候的大陆性极强,内陆冬夏温差可以高达50℃。
3,由青藏高原隆升引发的一系列气候变化
大约5000万年前,板块运动使印度与亚洲大陆碰撞导致地球历史上一次重要的造山事件,形成了全球规模最大的喜马拉雅—青藏造山带及世界的屋脊——青藏高原。
青藏高原隆升过程
青藏高原的隆升,改变并形成了我国西高东低的地形格局(我国大陆至少到白垩纪为止仍为东高西低的地势);引起了亚洲主要河流分布和走向的变化,改变了陆地向海洋的淡水和沉积物输送状况;使地球上大面积的热带、亚热带和温带陆地海拔抬升到4500m以上成为高寒区,形成冰雪、冻土集中分布的“世界第三极”;使西风环流发生分支,夏季的南支气流和冬季的北支气流对季风具有加强作用;隆升后的高原在夏季成为大气的热源、冬季构成冷源,使亚洲大范围地区夏季盛行偏南风,从低纬海洋带来大量水汽,使我国南方成为湿润的鱼米之乡,而冬季盛行干冷的偏北风,构成强大的亚洲季风;对来自海洋的水汽构成地形屏障,在亚洲形成世界上最大的内陆干旱区;使得高原区物理和化学风化加强,吸收大气CO2,导致全球逐渐变冷。
高原隆升引起的环境效应
高原隆升引起的的风化加剧和地壳均衡
3, 地圈与水圈相互作用
环南极洋流与南极冰盖形成
新生代以来,全球温度呈现阶段性下降趋势,始新世/渐新世之交(~34 Ma),降温极为剧烈,导致南极冰盖形成。德雷克和塔斯马尼亚海峡通道的开启导致环南极洋流(Antarctic Circumpolar Current,ACC)形成,从而阻碍了低纬向南半球高纬的热量传输,进而导致南极冰盖增长。当南极冰盖继续增长,扩大的冰盖范围足以封闭整个德雷克海峡时,这时环南极洋流受阻,环南极西风漂流带会消失,增强赤道热量向南极的输送,使扩展冰盖趋于消失,这是南极冰盖不能扩展成南半球大冰川的一个重要原因。
环南极洋流
4, 冰冻圈与地圈相互作用
冰川消融引起的地壳均衡调整
冰川均衡调整(Glacial isostatic adjustment,GIA)岩石圈对冰期地表冰和海水负荷改变的响应。一方面末次冰消期以来,北美的劳仑泰冰盖、科迪勒拉和伊努伊特冰盖以及欧亚大陆的不列颠、斯堪的纳维亚和巴伦支海-喀拉海等冰盖大规模融化,大量的冰融水进入大洋,造成全球平均海平面上涨约120 m;另一方面,由于冰川的卸载和海洋盆地的加载引起的地球内部物质的重新分布,导致冰后的地壳运动、地球重力场和应力场的变化,在之前的冰盖覆盖区,可能造成海平面的下降。
冰川消融引起的地壳均衡调整
如位于加拿大努纳武特行政区的巴瑟斯特因莱特,冰消期以来,因冰盖消融而引起的岩石圈均衡作用,导致该地区海平面一直在下降,形成了众多海岸线,现在这个地区的海平面仍在下降,如下图所示。
冰消期以来加拿大努纳武特行政区形成的海岸线
四,未 来 展 望
地球系统科学研究进入新的时期,人类上天、下海以及向地球深部进军的能力逐渐增强,各类探测器渐渐遍布天空、海洋、地表及以下,建立了庞大的对地球系统状态的观测网络,实时获取地球系统各圈层要素的信息。地史学将地球系统科学的研究横跨时空,古今过程的结合,帮助我们更好的认知地球的过去、现在和未来。同时超级计算机的出现,极快的运算速度和庞大的存储容量, 使得人们对于高度复杂的非线性地球系统的模拟有了可能,利用大数据、云计算等现代信息技术处理分析数据,建立模型,推进着地球系统科学的发展。
1, 原始数据获取
1,现代过程的观测体系
利用空天地一体化的调查方法技术,通过各类观测平台,获取地球系统各要素的数量、产状、结构、分布等基础要素信息。如在全球层面,已建立了全球环境监测系统(GEMS)、全球陆地观测系统(GTOS)、全球海洋观测系统(GOOS)、全球气候观测系统(GCOS)、国际长期生态研究网络(ILTER)、通量观测网络(FLUXNET)和综合全球观测战略(IGOS)等,通过天上卫星、陆表观测台站、海洋浮标、潜标和深潜器、地球深部探测等获取第一手数据,目前已更深程度地开展,上天、入地和下海等的数据获取,扩张人类认知地球的边界。
2,地史资料获取
地球上形成的各类岩石和沉积物忠实地记录了当时的地质过程及环境信息,是记录地球历史的“天然书籍”,我们可以利用这些材料去重建地史时期的地球系统演变过程。目前已经开展的大洋和大陆钻探等,正帮助人们往更古老的地质历史延伸,而高精度仪器分析技术的进步,使得人们可以获取更高时空分辨率的地质信息。
2, 模拟与预测体系及服务可持续发展
在获取第一手原始数据后,需要对所发生的各个时空尺度的地球系统过程进行模拟,以更好认知地球系统不同圈层、不同过程、不同时空尺度的运行与演变规律,并服务于可持续发展。近年来,原始数据的观测力度在不断增强,在模拟和预测方面刚刚起步,但发展势头迅猛。
气候模式的演变
2002年3月,日本地球模拟器开始运作,致力于带动日本海洋地球科学及相关领域的研发。
2015年3月,中科院大气物理研究所联合中科院计算所、中科院网络中心、中科曙光等单位率先启动“地球数值模拟装置”原型系统建设项目,2017年“地球系统数值模拟装置”国家重大科技基础设施项目获批建设。
2017年11月,青岛海洋科学与技术国家实验室联合美国国家大气研究中心、美国德州农工大学共同建设国际高分辨率地球系统预测实验室。
2018年4月,美国能源部(DOE)耗费四年时间构建了一个百亿亿次地球系统模型(E3SM),该模型作为“第一个端到端的多尺度地球系统模型”,它能够模拟地球的地壳、大气、冰山及海洋运动,从而预测地壳、大气及水循环系统相互作用的方式。
相信随着观测手段的多样性发展和技术的长足进步,获取地球系统各要素的数量、产状、结构、分布等基础要素信息的时空分辨率越来越高;计算机运算速度和存储容量的不断发展,超级计算机的飞速进步;地球系统模式向各个圈层和时空深度不断扩展,地球系统科学必迎来更大的发展和进步,从而促进人类对地球本身的科学认知,增强人类适应全球环境变化的能力,服务于可持续发展!
参考资料:
汪品先. 地球系统科学:理解与误解[J]. 海洋地质与第四纪地质, 2014(4):30-30.
吴福元,郭正堂. 青藏高原隆升能引起全球气候变化吗?. 10000个科学难题
郭正堂. 黄土高原见证季风和荒漠的由来[J]. SCIENTIA SINICA Terrae, 2017, 47(4): 421-437.
王斌, 周天军, 俞永强. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6):857-869.
侯增谦. 立足地球系统科学,支撑自然资源统一管理和系统修复. 中国自然资源报, 2018.
IPCC第五次评估报告(AR5)
舒良树.普通地质学[D].北京.地质出版社
朱诚,谢志仁等[D].北京.科学出版社
2018第十届中国(海南)国际海洋产业博览会(2018年9月28日-30日)
珊瑚礁究竟有多重要?| 官方授权独家首发《珊瑚礁科学概论》
海洋基础科学问题研究主要聚焦在?海洋科学的研究对象、知识体系、二级学科有哪些?| 《10000个科学难题(海洋卷)》全网独家首发
海洋知圈
知晓海洋 | 探知海洋
宣传海洋 | 服务海洋
发现水冰、揭秘火星大气,它们是唯二的火星侦察兵 | 火星探测简史
高空气象观测是指借助仪器对自由大气中各高度的气象状况进行观察和测定。观测项目有空气温度、湿度、气压和风等。主要的探测工具有无线电探空仪和测风气球,以及气象飞机、气象火箭和气象卫星等。
中文名
高空气象观测
观测项目
空气温度、湿度、气压
类别
气象观测
探测工具
无线电探空仪
快速
导航
发展历程主要功能我国现状
近地测量
测量近地面层以上大气的物理、化学特性的方法和技术,又称高空观测或高空探测。高空气象观测以测定大气各高度上的温度、湿度、气压、风向、风速为主,其他还有一些特殊项目,如大气成分、臭氧、辐射、大气电等。主要的观测方法有气球探测、气象飞机探测、无线电探空和测风、气象雷达探测、气象火箭探测、气象卫星探测等。
发展历程
自18世纪中叶以来,先后用风筝、载人气球携带仪器进行直接探测高空气象要素的试验(见大气科学发展简史)。19世纪末,法国、德国、美国发明和改进了探空气象仪。
1896年在欧洲组织国际间的探空气球探测试验,是高空气象观测站网的雏型。随着气象气球和光学经纬仪的发展,逐步建立了小球经纬仪测风的方法。
20世纪20~30年代末,在电报、编报、短波无线电技术发展的基础上,先后研制成了无线电探空仪、无线电经纬仪和测风雷达(见高空风观测)等,为建立全球高空观测站网奠定了基础。40年代,发展了气象火箭,探测高度可达100公里以上。
60年代以来,气象卫星和大气遥感技术的发展,促进了全天候和全球性的高空气象探测的发展。大量利用无线电遥测、遥控技术和电子计算机微处理机定量控制,实时处理,是当前各高空观测系统的技术特点。
美国火星探测计划的一个子项目——火星侦察兵项目原计划是是一个小型、低成本、高频次无人火星探测计划。
后来由于火星探测计划整体调整,火星侦察兵项目只发射了一个探测器,第一个就是凤凰号着陆器(Phoenix Mars Lander)。
为节约成本,加快进度,凤凰号采用了被取消的2001年火星勘测者号的着陆器。此外,它还携带了一套复杂的仪器,这些仪器是在失败的火星极地着陆器的仪器改进而来。
它的主要任务仍然是在火星上继续寻找水,而极地是最佳选择,因为那里曾经发现了水冰。凤凰号计划着陆的纬度相当于阿拉斯加北部,比以往任何一次任务都要偏北。
在为期三个月的任务中,凤凰号在地表附近挖掘了一层富含冰的地层。它考察了土壤和水冰的样本,以寻找该地曾经适宜生命存在的证据。
为了分析机械臂采集的土壤样本,凤凰号携带了微型烤箱和便携式实验室。将选定的样品加热以释放挥发物,并对其化学成分和其他特性进行分析。
凤凰号上的立体摄像机位于2米长的桅杆上,用两只“眼睛”获取着陆场地的高分辨率图像。
它还能提供着陆点周围地质图,供地面控制团队选择适宜挖掘的地点。多光谱探测能力可对着陆点的矿物进行鉴定。
此外,凤凰号还将对高度达20千米的大气层进行扫描,以获得有关云、雾和尘羽的形成、持续时间和移动的数据。它还装有温度和压力传感器。
凤凰号探测器总重664千克,其中着陆器重350千克。上面安装的科学仪器包括机械臂(RA)、显微镜、电化学和电导率分析仪(MECA)、机械臂摄像机(RAC)、表面立体成像仪、热气体分析仪(TEGA)、火星下降成像仪、气象站。2007年8月4日,它由德尔它7925运载火箭发射升空。
凤凰号任务的科学目标包括研究火星上所有阶段的水的 历史 ,寻找可居住区的证据,评估冰-土边界的生物潜力。更广泛地说,登陆器的设计目的是确定火星上是否曾经存在过生命,描述这颗红色星球的气候和地质特征,并为未来人类 探索 火星表面做准备。
这是美国宇航局第一次委托亚利桑那大学领导的火星探测任务,更确切地说是由该校月球和行星实验室领导的。
任务周期为90个火星日或大约92个地球日。
凤凰号发射后,于2007年8月10日和10月30日进行了中途校正,并于2008年4月10日和5月17日两次调整将其引向火星北极区。
当它接近火星时,火星勘测者轨道器(MRO)、火星奥德赛和火星快车(欧洲)三个探测器轨道也被调整,以使它们能够观测到凤凰号进入大气层的情况。此外,MRO的高分辨率相机被用来全面监视着陆区。
凤凰号于2008年5月25日以每小时近21000千米的速度进入火星大气,并于美国东部时间23:38:38在北极区绿谷(Green Valley)安全着陆。
凤凰号的进入-下降-着陆过程比火星探路者、勇气号和机遇号简单,它经过了防热外壳气动减速、降落伞减速和反推火箭减速等几个阶段,省去了缓冲气囊着陆的步骤。
在下降过程中,MRO的高清相机清晰地拍摄到了悬挂在降落伞下的凤凰号,这是第一次在行星着陆时由一个航天器拍摄到另一个航天器。
凤凰号在展开太阳能电池板前,等待了15分钟以使反推发动机激起的尘埃消失。
第一张照片显示的是一个被鹅卵石和水波破坏的平坦表面,但没有预期的大岩石或小山。
在四天之内,凤凰号传送了一张完整的火星表面360 全景图。此后,它展开了2.5米长的机械臂,并开始定期发回天气报告。
5月31日,机器臂铲起土壤,开始采集火星可能存在的冰。
到2008年6月19日,地面任务科学家们已能得出结论,在机器臂挖掘的所谓一条壕沟中,多个明亮物质可能是水冰:这些物质在挖出后的四天内就蒸发了。
2008年7月31日,宇航局正式宣布,根据对凤凰号着陆器采集的样本进行质谱仪分析,发现火星上存在水。
亚利桑那大学的专家指出,这些数据补充了2001年火星奥德赛轨道器的资料,后者的数据也表明火星上存在水。
8月5日,针对媒体关于火星上可能存在生命的传言,项目科学家宣布,他们在火星表面发现了高氯酸盐,既没有证实也没有驳斥火星上存在生命的可能性。
到2008年8月底,凤凰号完成了原定的90天的极区探测任务,后来又将任务延长至9月30日。
9月12日,着陆器铲子向其湿化学实验室提供了新的土壤样本,该样本将水溶液混合到土壤中,以确定土壤中可溶性养分和其他化学物质。早期的研究结果表明,土壤是碱性的,由盐类和其他化学物质组成,如高氯酸盐、钠、镁、氯化物和钾。
10月13日,凤凰号经受住了一场沙尘暴。
由于火星冬季即将到来,日照不足和恶劣的天气条件,着陆器于2008年10月28日进入安全模式。在安全模式下,非关键活动暂停,等待任务控制中心的进一步指示。
从10月30日至11月2日,控制人员每天都试图与凤凰号联系,但此后没有收到任何信号。
11月10日,宇航局宣布凤凰号“完成了在这颗红色星球上的成功工作”,12月1日,又宣布“已停止使用火星勘测者轨道器与凤凰号的联络”。
凤凰号失联是电能低功率和尘暴作用的综合结果。在冬季,凤凰号上可能积存了厚达19厘米的二氧化碳冰,其重量足以破坏脆弱的太阳能电池板。
2010年初,曾尝试与凤凰号进行联络但成功。2010年5月24日,宇航局宣布该项目正式结束。
来自MRO的最终显示,凤凰号的太阳能电池板在火星冬季的严寒中严重受损。凤凰号设计工作寿命为90个火星日,实际在火星北极成功运行了152个火星日,完成其全部科学目标。
凤凰号的重要成果是发现了水冰,且在后续采样分析中也发现过水冰。将带有水冰的土壤进行加热,当温度达到0 的时候,凤凰号携带的科学仪器探测到了水蒸汽。
MAVEN(火星大气和挥发性演化,中文被译为马文)是 火星侦察兵计划的第二个任务,也是最后一个任务。
为了响应美国科学院2003年提出的行星 探索 十年计划,宇航局列出了高度优先的科学目标,研制发射MAVEN的目标旨在获取火星大气的关键测量数据,以帮助了解这颗红色星球 历史 上剧烈的气候变化。
该计划旨在 探索 火星的大气和电离层及其与太阳和太阳风的相互作用。目的是利用这些数据来确定随着时间的推移,火星大气中挥发物的损失如何影响了火星的气候,从而有助于更好地理解地球气候学。
MAVEN火星轨道器重2454千克,包括三类科学仪器:第一类是P&F粒子与场探测仪器包,包括太阳风电子分析仪(SWEA)、太阳风离子分析仪(SWIA)、超热和热离子组成(静态)、太阳能粒子实验(SEP)、朗缪尔探针与波实验(LPW)、磁强计(MAG)。
第二类是遥感设备包,主要设备是成像紫外光谱仪(IUV)。第三类是中性气体和离子质谱仪包。2013年11月18日,NAVEN轨道器由宇宙神V401型火箭发射。
MAVEN发射后先到达环绕地球167 315千米的停泊轨道。火箭上面级又将其推进到倾角27.7 ,195 78200千米的双曲线地球轨道上。11月21日,上面级再次启动,MAVEN进入飞往火星的星际轨道。
经两次中途修正后,美东部时间2014年9月21日03时24分, MAVEN成功进入环绕火星的轨道,此后又经过变轨,最终进入150 6300 千米,周期4.5小时的轨道。较低的近火点是便于获取火星大气边缘的数据。
2013年10月中旬,MAVEN所有的科学仪器都被打开了,经过测试与准备,于11月16日开始为期一年的科学探测任务,利用9台科学仪器定期观测火星上层大气、电离层和太阳风等天气现象。
2014年2月10日至18日,轨道器完成了五次“深潜”演习中的第一次,即将MAVEN轨道降低到125千米,使大气纵向探测范围有所扩大。这一过程中,前三天被用来降低轨道,后5天绕火星运行约20圈进行科学探测。
2014年12月,该项目科学家宣布,MAVEN在火星大气层中发现了两个未预料到的现象,一个是高空尘埃云(海拔约150-300千米),另一个是北半球明亮的紫外线极光。
到2015年9月,MAVEN在火星轨道上运行工作满1年,此时它已经进行了四次深潜探测。当年11月,宇航局批准将其工作期限进行拓展。
宇航局披露,科学家发表了对MAVEN数据的分析结果,确定了促成火星气候从早期、温暖过渡的过程,以及目前可能支持表面生命的潮湿环境。更具体地说,这些信息有助于确定火星大气被太阳风“剥离”向空间扩散的准确率。
由于火星内部发电机冷却,火星磁场屏蔽作用消失导致火星大气被太阳风剥离。初步结果表明,很久以前,火星曾经有一个密度更大的大气层,它支撑着火星表面的液态水。那时,火星可能已经具备了支持微生物生存的环境条件。然而,作为剧烈气候变化的一部分,火星的大部分大气在很久以前就消失在太空中了。干涸的沟渠和通常在水中形成的矿物质等特征仍然可以提供火星过去存在水的线索,但稀薄的火星大气不再允许水在表面保持稳定。
2015年11月下旬、12月初,MAVEN连续近距离飞过火卫一卫星,距离在500千米以内,并利用紫外成像光谱仪采集火卫一光谱图像。
2016年10月3日,MAVEN完成了一个火星年的科学观测任务。
2017年2月28日,MAVEN进行了一次小幅轨道机动,以避免与火卫一发生撞击。
MAVEN在轨道上的第二个火星年任务期间,它所获得的探测数据将与欧空局的跟踪气体轨道器(Trace Gas Orbiter)相协调。
本文未注明来源的主要引自美国国家宇航局网站
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。